142x Filetype PDF File size 0.20 MB Source: www.casos.cs.cmu.edu
1 Response Surface Methodology CASOS Technical Report Kathleen M. Carley, Natalia Y. Kamneva, Jeff Reminga October 2004 CMU-ISRI-04-136 Carnegie Mellon University School of Computer Science ISRI - Institute for Software Research International CASOS - Center for Computational Analysis of Social and Organizational Systems 1 This work was supported in part by NASA # NAG-2-1569, Office of Naval Research Grant N00014-02-1- 0973, “Dynamic Network Analysis: Estimating Their Size, Shape and Potential Weaknesses”, Office of Naval Research, N00014-97-1-0037, “Constraint Based Team Transformation and Flexibility Analysis” under “Adaptive Architectures”, the DOD and the National Science Foundation under MKIDS. Additional support was provided by the center for Computational Analysis of Social and Organizational Systems (CASOS) (http://www.casos.cs.cmu.edu) and the Institute for Software Research International at Carnegie Mellon University. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the National Science Foundation, or the U.S. government. Form Approved Report Documentation Page OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED OCT 2004 00-10-2004 to 00-10-2004 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Response Surface Methodology 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Carnegie Mellon University,School of Computer REPORT NUMBER Science,Pittsburgh,PA,15213 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES RESPONSIBLE PERSON unclassified unclassified unclassified 31 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keywords: Response Surface Methodology (RSM), regression analysis, linear regression model, regressors, variable selection, model building, full model, multicollinearity, ridge regression, unit length scaling, condition number, optimization, Simulated Annealing, global optimum Abstract There is a problem faced by experimenters in many technical fields, where, in general, the response variable of interest is y and there is a set of predictor variablesx ,x ,...,x . For 1 2 k example, in Dynamic Network Analysis (DNA) Response Surface Methodology (RSM) might be useful for sensitivity analysis of various DNA measures for different kinds of random graphs and errors. In Social Network Problems usually the underlying mechanism is not fully understood, and the experimenter must approximate the unknown function g with appropriate empirical model y = f( x ,x ,..., x ) + ε, where the term ε represents the error in the system. 1 2 k Usually the function f is a first-order or second-order polynomial. This empirical model is called a response surface model. Identifying and fitting from experimental data an appropriate response surface model requires some use of statistical experimental design fundamentals, regression modeling techniques, and optimization methods. All three of these topics are usually combined into Response Surface Methodology (RSM). Also the experimenter may encounter situations where the full model may not be appropriate. Then variable selection or model-building techniques may be used to identify the best subset of regressors to include in a regression model. In our approach we use the simulated annealing method of optimization for searching the best subset of regressors. In some response surface experiments, there can be one or more near-linear dependences among regressor variables in the model. Regression model builders refer to this as multicollinearity among the regressors. Multicollinearity can have serious effects on the estimates of the model parameters and on the general applicability of the final model. The RSM is also extremely useful as an automated tool for model calibration and validation especially for modern computational multi-agent large-scale social-networks systems that are becoming heavily used in modeling and simulation of complex social networks. The RSM can be integrated in many large-scale simulation systems such as BioWar, ORA and is currently integrating in Vista, Construct, and DyNet. This report describes the theoretical approach for solving of these problems and the implementation of chosen methods.
no reviews yet
Please Login to review.