jagomart
digital resources
picture1_5a180046cc9037f4c26e13d3c3afc64f Mit18 02sc Supprobsol1


 177x       Filetype PDF       File size 0.34 MB       Source: ocw.mit.edu


File: 5a180046cc9037f4c26e13d3c3afc64f Mit18 02sc Supprobsol1
s 18 02 solutions to exercises 1 vectors and matrices 1a vectors 1a 1 a a 3 dir a a 3 b a 3 dir a a 3 c a ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                        S.  18.02 Solutions to Exercises 
                                                                           1.  Vectors and Matrices 
                                                                                       1A.  Vectors 
                                                           √                        √
                                   1A-1  a)  |A| =           3;     dir  A =  A= 3              b)   |A| = 3;       dir  A =  A=3 
                                             c)   |A| = 7;       dir  A =  A=7
                                   1A-2  1=25+1=25+c2 =  1  ⇒  c  =  ±√23=5
                                   1A-3  a)  A =  −i −2j +2k ;                    |A| = 3;       dir  A =  A=3: 
                                             b)  A  =  |A| dir  A  = 2i  + 4j  − 4k .                  Let  P  be  its  tail  and  Q  its  head.           Then 
                                   OQ  =  OP  +  A = 4j −3k ; therefore  Q = (0;4;−3). 
                                   1A-4  a)  OX  =  OP  +  PX  =  OP  + 1(PQ) =  OP  + 1(OQ−OP) =  1(OP  + OQ)
                                                                                       2                      2                      2 
                                           b)   OX  =  sOP  +  rOQ;  replace 1 by  r  in  above;  use  1  − r  =  s. 
                                                                                         2 
                                                       √
                                   1A-5  A =  3  3i + 3 j . The  condition  is  not  redundant  since  there  are  two  vectors  of 
                                                      2           2           o 
                                   length  3  making  an  angle  of  30          with  i . 
                                                                             √                                              √                        √
                                   1A-6  wind  w= 50(−i − j )= 2);                     v +  w = 200j ⇒  v = 50= 2i +(200+50= 2)j . 
                                                                                                   2            2             ′ 
                                   1A-7  a)  bi −aj              b)   −bi + aj          c) (3=5) +(4=5) = 1;                j  =  −(4=5)i +(3=5)j 
                                   1A-8  a)  is  elementary  trigonometry; 
                                                                 √ 2        2      2
                                             b)   cosα  =  a=      a + b + c ,  etc.;  dir  A = (−1=3;2=3;2=3) 
                                             c) if  t; u; v  are direction cosines of  some  A, then  ti +uj +v  k  = dir  A, a unit  vector, 
                                   so  t2 +u2 +v 2 =  1;  conversely,  if  this  relation  holds,  then  ti +uj +v  k  =  u is a unit vector, 
                                   so dir  u =  u and  t;u;v  are  the  direction  cosines  of  u. 
                                   1A-9  Letting  A and  B be  the  two  sides,  the  third  side  is  B −A;  the  line                                  B 
                                                                           1       1                  1                                                            B-A
                                   joining the two midpoints is              B − A,  which  =           (B −A),  a vector parallel 
                                                                           2       2                  2                                                      A 
                                   to  the  third  side  and  half  its  length. 
                                                                                                                                                     C 
                                   1A-10  Letting  A;B;C,D be the four sides;  then if  the vectors are suitably                                                    D 
                                                                                                                                                   A 
                                   oriented,  we  have  A +  B =  C+D.                                                                                             B 
                                       The  vector  from  the  midpoint  of  A to  the  midpoint  of  C is                      1C − 1A;  similarly,  the 
                                                                                                                                2        2 
                                   vector joining  the  midpoints  of the  other two  sides is                 1B − 1D,  and 
                                                                                                               2        2 
                                               A + B =  C + D             ⇒       C −A = B −D  ⇒                    1(C −A)= 1(B −D) ;
                                                                                                                    2                 2 
                                   thus  two  opposite  sides  are  equal  and  parallel,  which  shows  the  figure  is  a  parallelogram. 
                                   1A-11 Letting  the  four  vertices  be  O;P;Q;R;  with  X  on  PR  and  Y  on  OQ, 
                                                                      OX  =  OP  + PX  =  OP  + 1PR                                              R                        Q
                                                                                                                2 
                                                                              =  OP  + 1(OR−OP)                                                     Y 
                                                                                            2                                                             X
                                                                              = 1(OR+ OP)  = 1OQ  =  OY;
                                   therefore  X  =  Y .                            2                       2                        O                         P 
                                                                                                  1 
                                                                               2                                                                                      S.  18.02 SOLUTIONS TO EXERCISES 
                                                                                                                                                                                           1B.  Dot Product 
                                                                                                                                          A· B                            4+2                            1                               π                                                                  3                         1                            π 
                                                                               1B-1  a)  cosθ  =  |A||B| = √                                                                                  =  √ ;                       θ  =  4                           b)          cosθ  = √                               √ =  2;                            θ  = 3 . 
                                                                                                                                                                               2·6                          2                                                                                           6·             6
                                                                               1B-2  A ·  B =  c  − 4;  therefore (a)  orthogonal if  c  = 4, 
                                                                                                                                        √ c  −4 
                                                                                                      b)  cosθ  =                                2               √ ;  the  angle  θ  is  acute  if  cosθ >  0, i.e., if  c >  4. 
                                                                                                                                              c +5 6 
                                                                               1B-3  Place  the  cube  in  the  first  octant  so  the  origin  is  at  one  corner  P,  and  i ;  j ;  k  are 
                                                                               three  edges.  The  longest  diagonal  PQ  =  i +  j +  k ;  a  face  diagonal  PR  =  i +  j . 
                                                                                                                                              PQ· PR                                             2                                             −1 � 
                                                                                                      a)         cosθ  =  |PQ| · |PR| =  √ √ ;                                                                          θ  = cos                               2=3 
                                                                                                                                                                                               3 2 
                                                                                                                                            PQ·  i                               1                                        −1              √
                                                                                                      b)          cosθ  =  |PQ||i | = √3 ;                                                         θ  = cos                        1= 3. 
                                                                               1B-4  QP  = (a;0;−2);                                                             QR=(a;−2;2), therefore 
                                                                                                      a)         QP· QR= a2 −4;                                                     therefore  PQR  is  a  right  angle  if  a2 −4  = 0, i.e., if  a  =  ±2. 
                                                                                                                                                             a2 −4 
                                                                                                      b)          cosθ  =  √                                          √                          ;    the  angle  is  acute  if  cosθ >  0, i.e., if  a2 − 4  >  0,  or 
                                                                                                                                                   a2 +4 a2 +8
                                                                               |a| >  2, i.e.,  a >  2  or  a <  −2. 
                                                                                                                                                   √
                                                                               1B-5  a)  F·u =  −1= 3                                                                         b)         u =dir  A =  A=7,  so  F ·  u =  −4=7
                                                                               1B-6  After dividing by  |OP|, the equation says cosθ  =  c,  where  θ  is the angle between  OP 
                                                                               and  u;  call  its  solution                                                 θ0  =  cos−1 c:                               Then  the  locus  is  the  nappe  of  a  right  circular  cone 
                                                                               with  axis  in  the  direction  u and  vertex  angle  2θ0.                                                                                                             In  particular  this  cone  is 
                                                                                                      a)         a  plane  if  θ0 =  π=2, i.e., if  c  = 0                                                                             b)          a ray  if  θ0 = 0; π, i.e., if  c  =  ±1. 
                                                                                                      c)         Locus  is  the  origin,  if  c >  1  or  c <  −1 (division by  |OP| is  illegal,  notice). 
                                                                                                                                                       √2 
                                                                                                                    ′                    ′             √
                                                                               1B-7  a)  |i | =  |j  | =                                                     2  =  1;  a  picture  shows  the  system  is  right-handed. 
                                                                                                                                  ′                       √                                           ′                        √
                                                                                                      b)          A· i  =  −1= 2;                                                     A·  j  =  −5= 2;  ′                                                          ′ 
                                                                                                                                                                                                                                     −i  −5j 
                                                                               since  they  are  perpendicular  unit  vectors,  A =                                                                                                             √2                      . 
                                                                                                                                                          ′               ′                                 ′               ′ 
                                                                                                                                                       i  − j                                           i  + j 
                                                                                                c)         Solving,  i  =                                   √ ;                          j  =                 √ ; 
                                                                                                                                                                  2                                                 2 
                                                                                                                                                                ′               ′                          ′               ′                         ′                   ′ 
                                                                                                                                                     2(i  − j )                                 3(i  + j )                                 −i  −5j 
                                                                               thus  A = 2i −3j =                                                               √2                      −                  √2                     =                   √2                    ,     as  before. 
                                                                                                                                                                                                                                                                                                            ′           ′           ′             ′           ′             ′ 
                                                                               1B-8  a)  Check  that  each  has  length  1,  and  the  three  dot  products  i · j  ;  i ·  k  ;  j ·  k
                                                                               are  0;  make  a  sketch  to  check  right-handedness. 
                                                                                                                                  ′           √                                   ′                                           ′           √                                                                       √ ′                      √ ′
                                                                                                      b)          A·  i  =                          3;            A· j  = 0;                                A·  k  =                            6,             therefore,  A =                                          3i  +                    6k .
                                                                               1B-9  Let  u = dir  A, then the vector  u-component  of  B is (B· u)u.  Subtracting it  off gives 
                                                                               a  vector  perpendicular  to  u (and  therefore  also  to A); thus 
                                                                                                                                                                                                                                �                                           � 
                                                                                                                                                                              B =(B·u)u +  B −(B· u)u
                                                                                     1.    VECTORS AND MATRICES                                                                 3 
                                      or  in  terms  of  A,  remembering  that  |A|2 =  A ·  A, 
                                                                                           B·  A            �           B·  A        � 
                                                                                 B  =                    +     B  −
                                                                                           A· A A                       A· A A 
                                            . 
                                      1B-10  Let  two  adjacent  edges  of  the  parallelogram  be  the  vectors  A and  B; then the two 
                                                                                                                                                                               2 
                                      diagonals are  A +B and  A −B.  Remembering  that  for  any  vector  C we have  C · C =  |C| , 
                                      the  two  diagonals  have  equal  lengths 
                                                          ⇔                     (A + B)· (A + B)  = (A −B)· (A −B) 
                                                          ⇔      (A ·  A) + 2(A ·  B) + (B ·  B)  = (A ·  A) − 2(A ·  B) + (B ·  B) 
                                                          ⇔                                         A· B  = 0;
                                      which  says  the  two  sides  are  perpendicular,  i.e.,  the  parallelogram  is  a  rectangle. 
                                      1B-11  Using  the  notation  of  the  previous  exercise,  we  have  successively, 
                                                                           (A + B)· (A −B) =  A·A −B· B;                                therefore, 
                                                                 (A + B)· (A −B)  = 0  ⇔ A· A  =  B· B;
                                      i.e.,  the  diagonals  are  perpendicular  if  and  only  if  two  adjacent  edges  have  equal  length,  in 
                                      other  words,  if  the  parallelogram  is  a  rhombus. 
                                      1B-12  Let  O  be  the  center  of  the  semicircle,  Q  and  R  the  two  ends  of  the  diameter,  and 
                                      P  the  vertex  of  the  inscribed  angle;  set  A =  QO =  OR  and  B =  OP; then  |A| =  |B|.
                                           The  angle  sides  are  QP  =  A +  B and  PR  =  A − B;  they  are  perpendicular  since 
                                                                         (A + B)· (A −B) =  A·A −B· B
                                                                                                       = 0;           since  |A| =  |B|:
                                      1B-13  The  unit  vectors  are  ui = cosθi i + sinθi j ,  for  i  = 1;2;  the  angle  between  them  is 
                                      θ2 −θ1.  We  then  have  by  the  geometric  definition  of  the  dot  product 
                                                                            cos(θ2 −θ1) =  u1 ·  u2 ; 
                                                                                                    |u1||u2| 
                                                                                                =  cosθ1 cosθ2 +sinθ1 sinθ2; 
                                      according  to  the  formula  for  evaluating  the  dot  product  in  terms  of  components. 
                                      1B-14  Let  the  coterminal  vectors  A and  B represent  two  sides  of  the  triangle,  and  let  θ 
                                      be  the  included  angle.  Suitably  directed,  the  third  side  is  then  C =  A − B,  and 
                                                               |C|2  = (A −B)· (A −B) =  A · A + B · B −2A · B 
                                                                                                           =  |A|2 +  |B|2 − 2|A||B|cosθ; 
                                      by  the  geometric  interpretation  of  the  dot  product. 
                                            4                                               S.  18.02 SOLUTIONS TO EXERCISES 
                                                                                                       1C.  Determinants 
                                                              �             �                                               �                � 
                                                              �  1       4  �                                               �    3     −4 � 
                                            1C-1  a)  �                     �   =  −1−8  = −9                        b)     �                �  =  −10. 
                                                              �  2    −1�                                                   �  −1      −2� 
                                                         �                         � 
                                                         �  −1          0        4� 
                                                         �                         � 
                                            1C-2  �           1         2        2  �  = 2+0−8−(24+4+0)= −34: 
                                                         �                         � 
                                                         �    3      −2       −1 �                                  �                �          �             �          �             � 
                                                                                                                    �    2        2�            �  1       2�            �  1       2� 
                                                 a)    By  the  cofactors  of  row  one:  =  −1 �                                    � − 0 ·  �               � + 4  ·  �              � =  −34 
                                                                                                                    �  −2      −1 �             �  3    −1 �             �  3    −2 � 
                                                                                                                           �                �        �                �        �          � 
                                                                                                                           �    2        2�          �    0        4�          �  0    4� 
                                                 b)  By  the  cofactors  of  column  one:  =  −1· �                                         �  −1· �                  �  +3· �            �   =  −34. 
                                                                                                                           � −2       −1 �           � −2       −1 �           �  2    2� 
                                                              �             � 
                                                              �  1       2� 
                                            1C-3  a)  �                     �   =  −3;              so  area  of  the  parallelogram  is  3,  area  of  the  triangle  is  3/2 
                                                              � 1     −1�                                                    �             � 
                                                                                                                             �  0    −3 � 
                                                     b)  sides  are  PQ  = (0;−3);  PR  = (1;1);  �                                        �   = 3;  so  area  of  the  parallelogram 
                                            is  3,  area  of  the  triangle  is  3/2                                         � 1        1�
                                                        �                      � 
                                                        �   1       1       1  � 
                                                        �                      �               2            2        2            2            2                2 
                                            1C-4  �x1  x2  x3 �  =  x2x3 + x1x2 + x1x3 −x1x2 −x 2x3 −x1x3
                                                        �   2       2        2 � 
                                                        �  x1     x2      x3 �                          2           2                               2       2                           2               2
                                                 (x −x )(x −x )(x −x ) =  x x −x x −x x x +x x −x x +x x x +x x −x x : 
                                                     1      2       1       3      2       3            1 2         1 3         1 3 2           1 3         2 1         2 1 3           2 3         2 3
                                                 Two  terms  cancel,  and  the  other  six  are  the  same  as  those  above,  except  they  have  the 
                                            opposite  sign. 
                                                             �                                   �                                                                   �              � 
                                                             �      x1                  y1       �                                                                   �  x1     y1 � 
                                            1C-5  a)  �                                          �   =  x1y2 +  ax1y1 −x2y1 −ay1x1  =  �                                            �  : 
                                                             �  x2 +  ax1         y2 +  ay1 �                                                                        �  x2     y2� 
                                                     b)    is  similar. 
                                            1C-6  Use  the  Laplace  expansion  by  the  cofactors  of  the  first  row. 
                                            1C-7  The  heads  of  two  vectors  are  on  the  unit  circle.  The  area  of  the  parallelogram  they 
                                            span  is  biggest  when  the  vectors  are  perpendicular,  since  area  =  absinθ  = 1 · 1 ·  sinθ;  and 
                                            sinθ  has  its  maximum  when  θ  =  π=2. 
                                                                                                           �              � 
                                                                                                           �  x1     y1 � 
                                                 Therefore  the  maximum  value  of  �                                    �  =    area  of  unit  square  = 1. 
                                                                                                           �  x2     y2 � 
                                            1C-9               PQ  = (0;−1;2);  PR  = (0;1;−1);  PS  = (1;2;1); 
                                                                                                                       �                      � 
                                                                                                                       �  0    −1           2� 
                                                                                                                       �                      � 
                                                                      volume  parallelepiped  =  ±� 0                             1     −1 �  =  ±(−1)  = 1  : 
                                                                                                                       �                      � 
                                                                                                                       �  1       2         1� 
                                                 vol.  tetrahedron  =  1(base)(ht.)  =  1 ·  1  (p’piped  base)(ht.)  =  1(vol.  p’piped)  =  1=6. 
                                                                                     3                          3    2                                          6
                                            1C-10  Thinking  of  them  all  as  origin  vectors,  A lies  in  the  plane  of  B and  C,  therefore 
                                            the  volume  of  the  parallelepiped  spanned  by  the  three  vectors  is  zero. 
The words contained in this file might help you see if this file matches what you are looking for:

...S solutions to exercises vectors and matrices a dir b c i j k let p be its tail q head then oq op therefore ox px pq sop roq replace by r in above use the condition is not redundant since there are two of o length making an angle with wind w v bi aj elementary trigonometry cos etc if t u direction cosines some ti uj unit vector so conversely this relation holds letting sides third side line joining midpoints which parallel half d four suitably oriented we have from midpoint similarly other thus opposite equal shows gure parallelogram vertices x on pr y or oy dot product orthogonal acute e place cube rst octant origin at one corner three edges longest diagonal face...

no reviews yet
Please Login to review.