jagomart
digital resources
picture1_Surface Integral Pdf 169766 | Mit18 02sc Pb 93 Comb


 165x       Filetype PDF       File size 0.63 MB       Source: mitocw.ups.edu.ec


File: Surface Integral Pdf 169766 | Mit18 02sc Pb 93 Comb
problems extended stokes theorem let f 2xz y 2yz 3x x2 y2 5 use stokes theorem to compute f dr where c is the curve shown on the surface of ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
                                   Problems: Extended Stokes’ Theorem  
                Let F = (2xz + y, 2yz +3x, x2 + y2 +5). Use Stokes’ theorem to compute    F · dr, where 
                C is the curve shown on the surface of the circular cylinder of radius 1.        C 
                                    Figure 1: Positively oriented curve around a cylinder. 
                Answer: This is very similar to an earlier example; we can use Stokes’ theorem to calculate 
                this integral even though we don’t have an exact description of C.  We just make C into 
                part of the boundary of a surface, as shown in the figure below. 
                                    Figure 2: Curves C and C bound part of a cylinder. 
                                                                1 
                Let C1  be the unit circle in the xy-plane oriented to match C  and S  the portion of the 
                 cylinder between C and C . Then Stokes’ theorem says:
                                            1
                                                       F · dr =     curlF · n dS. 
                                                 C −C              S 
                                                  1
                                                                                     
                                                     i         j            k        
                                                    ∂          ∂            ∂        
                                      curlF =       ∂x         ∂y           ∂z        = 2k. 
                                                                                     
                                                  2xz + y  2yz +3x x2 + y2 +5   
                Since the normal vector to S is always orthogonal to k,    curlF · n = 0. 
                                                                              S      
                 Thus, C −CF · dr = C F · dr − C F · dr = 0 and C F · dr = C F · dr.
                          1               1                                           1 
                                                                    1
                To finish, parametrize C1 by x = cos t, y = sin t, z = 0, 0 ≤ t < 2π and calculate: 
                                 I             I                                   2    2
                                   F · dr  =      (2xz + y)dx + (2yz + 3x)dy + (x  + y )dz 
                                 C               C 
                                  1             
                                           =  Z 2π sin t(− sin t dt) + 3 cos t(cos t dt) 
                                                 0 
                                           =  Z  2π −1 + 4 cos2 t dt 
                                                0                      
                                                      4                2π 
                                           = −t + 2(t + sin t cos t) 0  = 2π. 
                                                                  2
       MIT OpenCourseWare
       http://ocw.mit.edu
       18.02SC Multivariable Calculus
       Fall 2010
       For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
The words contained in this file might help you see if this file matches what you are looking for:

...Problems extended stokes theorem let f xz y yz x use to compute dr where c is the curve shown on surface of circular cylinder radius figure positively oriented around a answer this very similar an earlier example we can calculate integral even though don t have exact description just make into part boundary as in gure below curves and bound be unit circle xy plane match s portion between then says curlf n ds i j k z since normal vector always orthogonal thus cf nish parametrize by cos sin...

no reviews yet
Please Login to review.