jagomart
digital resources
picture1_Cd0a3c9302ffa25d0dc2767e0065a756 Mit18 02sc Pb 84 Comb


 152x       Filetype PDF       File size 0.16 MB       Source: ocw.mit.edu


File: Cd0a3c9302ffa25d0dc2767e0065a756 Mit18 02sc Pb 84 Comb
problems divergence theorem 2 2 let s be the part of the paraboloid z 1 x y which is above the xy plane and s 1 2 be the unit ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
                                     Problems: Divergence Theorem  
                                                               2    2
                Let S be the part of the paraboloid z = 1 − x − y which is above the xy-plane and S
                     1                                                                                   2 
                be the unit disk in the xy-plane.  Use the divergence theorem to find the flux of F upward 
                through S , where F = (yz, xz, xy). 
                          1
                Answer:  Write F = Mi + Nj + P k, where M = yz,  N = xz, and P = xy. Then 
                                               divF = M + N + P =0. 
                                                         x     y    z 
                The divergence theorem says: flux =            F · n dS =     divF dV  =     0 dV  = 0 
                                                        S1+S2                D                D
                ⇒    F · n dS +   F · n dS = 0  ⇒    F · n dS = −   F · n dS. 
                      S               S                     S                 S
                       1               2                     1                 2 
                Therefore to find what we want we only need to compute the flux through S . 
                                                                                            2
                But S is in the xy-plane, so dS = dx dy, n = −k  ⇒  F · n dS = −xy dxdy on S . 
                     2                                                                          2
                Since S2 is the unit disk, symmetry gives
                                  −xy dxdy =0  ⇒    F · n dS = −   F · n dS = 0. 
                                 S                        S                 S
                                  2                        1                 2 
       MIT OpenCourseWare
       http://ocw.mit.edu
       18.02SC Multivariable Calculus
       Fall 2010
       For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
The words contained in this file might help you see if this file matches what you are looking for:

...Problems divergence theorem let s be the part of paraboloid z x y which is above xy plane and unit disk in use to nd ux f upward through where yz xz answer write mi nj p k m n then divf says ds dv d therefore what we want only need compute but so dx dy dxdy on since symmetry gives mit opencourseware http ocw edu sc multivariable calculus fall for information about citing these materials or our terms visit...

no reviews yet
Please Login to review.