186x Filetype PPTX File size 1.33 MB Source: web.mit.edu
st nd 1 law and 2 law in a simple system st dU Q PdV dU TdS PdV 1 law: 1 P nd dS dU dV 2 law: QTdS T T The functions U(S, V, N) and S(U,V, N) are called fundamental equations of a system. Each one of them contains full information about a system. Generally dU TdS ydx energy representation i i i 1 y dS dU i dx entropy representation T T i i Equations of state The intensive variables in the fundamental equations written as functions of the extensive variables (for fixed mole numbers): dU TdS PdV T T(S,V) P P(S,V) dS 1 dU PdV 1 1(S,V) P P(S,V) T T T T T T Generally y y (x ,x ,...,x ,...) i i 1 2 i Chemical potential and partial molar quantities Chemical potential m for the component i i U S i N i N T i S,V,... i S,V,... Quasi-static chemical work W dN dU TdS PdV dN c i i i i i i The partial molar quantity x (x is an extensive function) associated with the component i (when T, P are constant) x V x partial molar volume V N i N i i T,P,N ( ji) i T,P,N ( ji) j j Euler relation U and S are both homogeneous first order functions of extensive parameters U(X1,X2,...,Xi,...) U(X1,X2,...,Xi,...) l is a constant U(x ,x ,...,x ,...) U(x,x ,...,x ,...) 1 2 i 1 2 i U(x,x ,...,x ,...) (x ) U(x,x ,...,x ,...) U 1 2 i i 1 2 i x (x ) (x ) i i i i i U(x,x ,...,x ,...) Let l = 1 U 1 2 i x y x (x ) i i i i i i UTS PV N S1UPV i N Simple systems i i i i T T i T Gibbs-Duhem relation UTS PVN dUd(TS) d(PV)d(iNi) i i i i 1st law of TD: dU TdS PdV dN i i i TdS PdV idNi d(TS) d(PV)d(iNi) i i SdT VdPNidi 0 i in simple systems Ud(1)Vd(P) Nd(i)0 T T i T i In a single component simple system: d sdT vdP
no reviews yet
Please Login to review.