jagomart
digital resources
picture1_Indefinite Integral Pdf 172038 | Abcalc Day52 4 1


 127x       Filetype PDF       File size 0.16 MB       Source: teachers.dadeschools.net


File: Indefinite Integral Pdf 172038 | Abcalc Day52 4 1
4 1 antiderivatives and indefinite integration objectives write the general solution of a differential equation use indefinite integral notation for antiderivatives use basic integration rules to find antiderivatives assignment pg ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                      4.1 Antiderivatives and Indefinite Integration
                       Objectives: •Write the general solution of a differential 
                                  equation.
                                  •Use indefinite integral notation for 
                                  antiderivatives
                                  •Use basic integration rules to find 
                                  antiderivatives
                     Assignment: pg. 255 #’s 2‐44 even
                                            Exploration
                       For each derivative, describe the original function F. 
                             a. 'Fx( )  2x
                             b. 'Fx( )  x
                                          2
                             c. 'Fx( )  x
                             d. 'Fx( )  1
                                         x2
                             e. 'Fx( )  1
                                         x3
                             f. 'Fx( ) cosx
                                  Definition of Antiderivative
                      A function F is an antiderivative of f on an interval 
                         Fx'( )  f(x)
                      I if             for all x in I. 
                       You can represent the entire family of 
                       antiderivatives of a function by adding a constant to 
                       a known antiderivative. 
                                                        2
                                          then f()xx    C
                               F'(xx)  2
                           The constant C is called the constant of 
                           integration. 
                                                                                                                                                                     1
                                                Notation for Antiderivatives
                                 When solving a differential equation of the form
                                                                    dy  f ()x
                                                                    dx
                                 It is convenient to write in the equivalent differential 
                                 form dy  f ()x dx
                                 The operation of finding all solutions of this 
                                 equation is called antidifferentiation (or indefinite 
                                 integration) and is denoted by an integral sign ∫.
                                                     yf()xdxF()xC
                                                          
                                                              Variable of 
                                                              integration                 Constant of 
                                                                                          integration
                                                     yf()xdxF()xC
                                                          
                                                          Integrand          An 
                                                                             antiderivative 
                                                                             of f (x)
                              The expression ∫ f (x)dx is read as the antiderivative of 
                              f with respect to x. So, the differential dx serves to 
                              identify x as the variable of integration. The term 
                              indefinite integral is a synonym for antiderivative. 
                                                     Basic Integration Rules
                                                       Differentiation Formulas
                               d                                               d sinxxcos
                                    C 0                                          
                               dx                                           dx
                               d                                               d cosxxsin
                                    kx k                                         
                               dx                                           dx
                               d                                               d                  2
                                                                                   tan xxsec
                                                                                 
                                    kf ()x   kf ()x
                               dx                                           dx
                               d                                               d secx secxxtan
                                                          
                                    f ()xg()x f()xg()x
                               dx dx
                               d                                               d                    2
                                      nn1                                         cot     csc
                                                                                        xx
                                                                                
                                    xn x                                     dx
                               dx 
                                                                               d cscx cscxxcot
                                                                              dx
                                                                                                                                                                                                                                            2
                                           Basic Integration Rules
                                             Integration Formulas
                                                                               sin x  C
                                                                          xdx
                        0 dxC                                     cos  
                                                                               cosxC
                          kd  x                                       sin xd  x
                               kx   C                            
                                                                      sec2xd  x
                          kf ()x  dx  kf()xdx                                 tan x  C
                                       
                                                                      sec tan        secxC
                            f ()xg  ()xdx                               x    xdx
                          
                                            f()xdx       g(xd)x
                                               
                                    xn1                                 2
                            n                                         csc    
                                 Cn,   1                             xdxcotxC
                         xd  xn1
                                                                      cscxcotxd  x
                                                                                   cscx C
                         Find the general solution of the differential equation. 
                                                    dy 3x
                                                    dx
                                                       Examples
                            Original          Rewrite         Integrate         Simplify
                             Integral
                              1 dx
                            x3
                               xdx
                          2sinx dx
                                                                                                                                                                                                 3
                 (2x  ) dx
                     42
                   35x xxdx
                           
                  x1dx
                    x
                  sin x dx
                 cos2 x
                                                                                                                       4
The words contained in this file might help you see if this file matches what you are looking for:

...Antiderivatives and indefinite integration objectives write the general solution of a differential equation use integral notation for basic rules to find assignment pg s even exploration each derivative describe original function f fx x b c d e cosx definition antiderivative is an on interval i if all in you can represent entire family by adding constant known then xx called when solving form dy dx it convenient equivalent operation finding solutions this antidifferentiation or denoted sign yf xdxf xc variable integrand expression read as with respect so serves identify term synonym differentiation formulas sinxxcos cosxxsin kx k tan xxsec kf secx secxxtan xg nn cot csc xn cscx cscxxcot sin xdx dxc cos cosxc kd xd secxd sec secxc g n cn xdxcotxc cscxcotxd examples rewrite integrate simplify sinx xxdx...

no reviews yet
Please Login to review.