263x Filetype PDF File size 0.64 MB Source: people.smp.uq.edu.au
Beta Integrals Euler Beta Integral Beta Integrals Selberg Integral A Selberg n Integral S. Ole Warnaar Department of Mathematics and Statistics Beta Integrals Euler Beta Integral Euler Beta Integral Wallis formula Gamma function Euler beta integral Wallis formula (1656) Orthogonal polynomials Selberg Integral A Selberg n Integral π 22 42 62 2 = 1·3 · 3·5 · 5·7 ··· ∞ 2 =Y (2n) n=1 (2n −1)(2n+1) Beta Integrals Euler Beta Integral Gamma function (Euler 1720s) Wallis formula Gamma function Euler beta integral Orthogonal polynomials Selberg Integral A Selberg n Integral n!nx−1 Γ(x) = lim x 6= 0;−1;−2;::: n→∞x(x +1)···(x +n−1) =Z0∞tx−1e−tdt Re(x) > 0 Beta Integrals Euler Beta Integral Wallis formula π Gamma function Since = Wallis’ formula is equivalent to Euler beta 4 integral Orthogonal 1 polynomials Selberg Integral A Selberg Z 1p n 2 Integral 2 1−x dx =Γ(1=2)Γ(3=2) 0 or, by x2 = t, to Z 1 1=2−1 3=2−1 0 t (1 −t) dt = Γ(1=2)Γ(3=2): This led Euler to the discovery of a more general integral.
no reviews yet
Please Login to review.