117x Filetype PDF File size 0.14 MB Source: old.amu.ac.in
POLYMERIZATION TECHNIQUES Polystyrene was first made by E. Simon in 1839 who at the time believed he had produced an oxidation product, which he called styrol oxide. Since that time the polymerisation of styrene has been extensively studied. In fact a great deal of the work which now enables us to understand the fundamentals of polymerization was carried out on styrene. The polymer may be prepared by mass, suspension, solution, and emulsion methods, the first two being the most important. Mass polymerisation has the advantage of apparent simplicity and gives a polymer of high clarity and very good electrical insulation characteristics. There are, however, severe problems due to the exothermic reaction and the product has a broad molecular weight distribution. Polymerisation in solution reduces the exothenn but may lead to problems of solvent recovery and solvent hazards. The solvent may also act as a chain transfer agent and cause a reduction in molecular weight. Suspension polymerisation avoids most of these problems but there is some contamination of the polymer by water and the suspension agent. Furthermore the polymer must be dried and aggregated before being sold as pellets suitable for injection moulding and extrusion. Emulsion polymerisation techniques are seldom used with polystyrene since the large quantities of soap used seriously affects clarity and electrical insulation characteristics. This process is therefore used only for the production of polystyrene latex. 1-Bulk (Mass) Polymerization Bulk or mass polymerization of a pure monomer offers the simplest process with a minimum of contamination of the product. However, bulk polymerization is difficult to control because of the characteristics of radical chain polymerization. Their highly exothermic nature, the high activation energies involved, and the tendency toward the gel effect combine to make heat dissipation difficult. Bulk polymerization requires careful temperature control. Further, there is also the need for strong and elaborate stirring equipment since the viscosity of the reaction system increases rapidly at relatively low conversion. The viscosity and exotherm effects make temperature control difficult. Local hot spots may occur, resulting in degradation and discoloration of the polymer product and a broadened molecular weight distribution due to chain transfer to polymer. In the extreme case, uncontrolled acceleration of the polymerization rate can lead to disastrous ‘‘runaway’’ reactions [Sebastian and Biesenberger, 1979]. Bulk polymerization is not used commercially for chain polymerizations nearly as much as for step polymerizations because of the difficulties indicated. It is, however, used in the polymerizations of ethylene, styrene, and methyl methacrylate. The heat dissipation and viscosity problems are circumvented by carrying out the polymerizations to low conversions with separation and recycling of unreacted monomer. An alternative is to carry out polymerization in stages—to low conversion in a large reactor and to final conversion in thin layers (either on supports or free- falling streams). 2-Solution Polymerization Polymerization of a monomer in a solvent overcomes many of the disadvantages of the bulk process. The solvent acts as diluent and aids in the transfer of the heat of polymerization. The solvent also allows easier stirring, since the viscosity of the reaction mixture is decreased. Thermal control is much easier in solution polymerization compared to bulk polymerization. On the other hand, the presence of solvent may present new difficulties. Unless the solvent is chosen with appropriate consideration, chain transfer to solvent can become a problem. Further, the purity of the polymer may be affected if there are difficulties in removal of the solvent. Vinyl acetate, acrylonitrile, and esters of acrylic acid are polymerized in solution. By polymerising styrene in solution many problems associated with heat transfer and the physical movement of viscous masses are reduced, these advantages being offset by problems of solvent recovery and the possibility of chain transfer reactions. In 1955 Distrene Ltd started a plant at Barry in South Wales for the production of styrene by such a solution polymerisation process and some details have been made a ailable .The essential details of this process are indicated by Styrene and solvent are blended together and then pumped to the top of the first reactor which is divided into three heating zones. In the first zone the solution is heated to start up the polymerisation reaction but because of the exothermic reaction in the second and third zones of the first reactor and the three zones of the second reactor Dowtherm cooling coils are used to take heat out of the system. By the time the reaction mixture reaches the third reactor the polymerisation reaction has started to slow down and so the reaction mixture is reheated. From the third reactor the polymer is then run into a devolatilising (‘stripping’) vessel in the form of thin strands. At a temperature of 225°C the solvent, residual monomer and some very low molecular weight polymers are removed, condensed and recycled. The polymer is then fed to extruder units, extruded as filaments, granulated, lubricated and stored to await dispatch. 3- Suspension Polymerization The average molecular weight of most bulk polymerised poly(methy1 methacrylates) is too high to give a material which has adequate flow properties for injection moulding and extrusion. By rolling on a two-roll mill the molecular weight of the polymer can be greatly reduced by mechanical scission, analogous to that involved in the mastication of natural rubber, and so mouldable materials may be obtained. However, bulk polymerisation is expensive and the additional milling and grinding processes necessary make this process uneconomic in addition to increasing the risk of contamination. As a result the suspension polymerisation of methyl methacrylate was developed to produce commercial material such as Diakon made by ICI. Such a polymerisation can be carried out rapidly, usually in less than an hour, because there is no serious exotherm problem. There is, however, a problem in controlling the particle size of the beads formed and further in preventing their agglomeration, problems common to all suspension- type polymerisations. The particle size of the beads is determined by the shape and size of the reactor, the type and rate of agitation and also the nature of suspending agents and protective colloids present. Suspending agents used include talc, magnesium carbonate and aluminium oxide whilst poly(viny1 alcohol) and sodium polymethacrylate are among materials used as protective colloids. In one process described in the literature’ one part of methyl methacrylate was agitated with two parts of water and 0.2% benzoyl peroxide was employed as the catalyst. Eight to 18 g of magnesium carbonate per litre of reactants were added, the lower amount being used for larger beads, the larger for small beads. The reaction temperature was 80°C initially but this rose to 120°C because of the exothermic reaction. Polymerisation was complete in about an hour. The magnesium carbonate was removed by adding sulphuric acid to the mixture. The beads were then filtered off, carefully washed and dried. Other additives that may be incorporated include sodium hydrogen phosphates as buffering agents to stabilise that pH of the reaction medium, lauryl mercaptan or trichlorethylene as chain transfer agents to control molecular weight, a lubricant such as stearic acid and small amounts of an emulsifier such as sodium lauryl sulphate. The dried beads may be supplied as injection moulding material without further treatment or they may be compounded with additives and granulated. Suspension polymerisation of styrene is widely practised c~mmercially.I~n this process the monomer is suspended in droplets $-$in. in diameter in a fluid, usually water. The heat transfer distances for the dissipation of the exotherm are thus reduced to values in the range &-&in. Removal of heat from the lowviscosity fluid medium presents little problem. The reaction is initiated by monomer-soluble initiators such as benzoyl peroxide. It is necessary to coat the droplets effectively with some suspension agent, e.g. poly(viny1 alcohol), talc etc., to prevent them cohering. Control of the type and quantity of suspension agent and of the agitation has a pronounced effect on the resulting particles. It is not unknown for the whole of the polymerising mass to aggregate and settle to the bottom of the reaction vessel because of such conditions being incorrect. Following polymerisation, unreacted monomer may be removed by steam distillation and the polymer is washed and dried. The disadvantages of the suspension process are that about 70% of the volume of the kettle is taken up by water, the need for a drying stage which could cause discolouration by degradation and the need to convert the small spheres formed into a larger shape suitable for handling. Furthermore, the suspension method cannot easily be converted into a continuous process. 4- Emulsion Polymerization Because of the large quantities of soap left in the polymer, which adversely affects clarity, electrical insulation characteristics and problems in agitation and densification, this process is used only for making latices. The techniques used are in many respects similar to those for emulsion polymerised PVC. Emulsion polymerization refers to a unique process employed for some radical chain polymerizations. It involves the polymerization of monomers in the form of emulsions (i.e., colloidal dispersions). The process bears a superficial resemblance to suspension polymerization but is quite different in mechanism and reaction characteristics.
no reviews yet
Please Login to review.