153x Filetype PDF File size 0.81 MB Source: ricaxcan.uaz.edu.mx
Materials Science Forum Vol. 560 (2007) pp 115-120 Online available since 2007/Nov/15 at www.scientific.net © (2007) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/MSF.560.115 M.Montoya Dávila1,a,M.A.Pech Canul2,b,M.I.Pech Canul1,c∗ 1 CinvestavSaltillo.Carr.Saltillo Mty.Km13,SaltilloCoah.México,25900 2 CinvestavMérida.Km.6AntiguacarreteraaProgresoApdo.Postal73,Cordemex,97310, Mérida,Yuc.,México a b miguel.montoya@cinvestav.edu.mx, max@mda.cinvestav.mx, cmartin.pech@cinvestav.edu.mx. TheeffectofparticlesizedistributionandparticlesizeratioofSiC inSiC /SiO p p 2 preformsonthemicrostructure,microhardnessofSiC reinforcements,modulusofrupture, p andsuperficialhardnessofAl/SiC compositesproducedbypressurelessinfiltrationhasbeen p investigated. SiC /SiO preforms in the form of plates (4cm x 3cm x 0.5cm) have been p 2 o pressurelessinfiltratedbythealloyAl'15.52Mg'13.62Si(wt.%)at1100 Cfor60min underinertatmosphere.SiCpowderswithaverageparticlesizeof10,68and140mare mixed with SiO powders and preforms of 40 % porosity with unimodal, bimodal and 2 trimodalsizedistributionsarepreparedbyuniaxialcompaction.Thebimodal(small:large) andtrimodal(small:medium:large)preformsarepreparedwithdifferentparticlesizeratios inthefollowinglevels:1:1,3:1,1:3,2:2:2,3:2:1,3:1:2.Resultsfromcharacterizationby XRD,SEMandenergydispersiveX'rayspectrometryshowthatthetypicalmicrostructureof the composites contains the MgAl O (spinel), AlN and MgO phases formed during 2 4 processingaswellaspartiallyreactedsilica,SiC,SiandAl.Itisfoundthatthedensity, reinforcementmicrohardness,modulusofruptureandsuperficialhardnessofthecomposites increaseallwithwiderparticlesizedistribution.However,whilstthemodulusofruptureis mainlyaffectedongoingfromunimodalandbimodaltotrimodaldistribution,superficial hardnessandmicrohardnessaremostlyinfluencedongoingfromunimodaltobimodaland trimodaldistribution. Aluminummatrixcompositeswithahighvolumefractionofaceramicreinforcementhave beenthesubjectofintenseinvestigationsinthelastyearsduetoimprovedstrength,stiffness, thermalconductivity,abrasionresistanceanddimensionalstability.TheAl/SiCsystemhas attractedtheattentionofmanyresearchersparticularlyforthoseapplicationsdemandinga lowcoefficientofthermalexpansion(CTE)andahighthermalconductivity[1'3].Itiswell knownthatinordertoachievelargevolumefractionsoftheceramicinametal/ceramic composite,itisnecessarytousereinforcementsofsubstantiallydifferentsizes[3'6].Fromthe availableprocessingtechniquesfortheproductionofmetalmatrixcomposites,theinfiltration ofceramicpreformsbyliquidmetalsisthemostconvenientrouteforthemanufactureof compositeswithahighvolumefractionofthereinforcements.Bytheinfiltrationroute,itis possibletoproducenear'netshapecompositeswithhighdimensionalstabilityandauniform distributionofthereinforcements. Mostoftheworkdoneonthefabricationofcompositeswithahighvolumefractionof reinforcementshasbeenconnectedtothepressure'orvacuum'assistedinfiltrationtechniques [3'6]. However, in order to abate processing costs, the development of alternative non' assisted or pressureless infiltration routes is of paramount importance. The feasibility of ∗ Correspondingauthor All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP, www.ttp.net. (ID: 152.2.176.242, University of North Carolina at Chapel Hill, Chapel Hill, USA-30/11/14,22:20:03) 116 Advanced Structural Materials III producing Al/SiC composites with thermal conductivities similar to those exhibited by aluminumalloyshasbeenreportedbyArpónetal.[3]frominvestigationswithpressure' assistedinfiltration,andCui[7]reportedthefabricationofAl/SiCcompositeswithaSiC volumefractionof0.68bythepressurelessinfiltrationtechnique.However,aninconvenience ofthemethodisthatlongprocessingtimesareusedforthepreparationofthepreforms(5hr) andthecomposites(1'3hr)[7]. Inordertotakeadvantageofthethermalproperties(CTEandthermalconductivity)of Al/SiC composites with high volume fractions of the reinforcements, it is also of vital importancetofullycharacterizethemechanicalpropertiesofthecomposites.Theaimofthis workwastoinvestigatetheeffectofparticlesizedistributionandparticlesizeratioofSiC in p SiC /SiO preformsonthemicrostructure,microhardnessofSiC reinforcements,modulusof p 2 p rupture,andsuperficialhardnessofAl/SiC compositesproducedbypressurelessinfiltration. p PreformswithaSiCpvolumefractionof0.60werepreparedwithsiliconcarbidepowdersof threedifferentparticlesizes[10(small),68(medium)and140(large)m],threedifferent particlesizedistributions(unimodal,bimodalandtrimodal)anddifferentparticlesizeratios forbimodal(small:large)andtrimodal(small:medium:large)distributions:1:1,3:1,1:3, 2:2:2,3:2:1,3:1:2.Thedesignationforparticlesizeratioinvolvesboththetypeofpreform (bimodalortrimodal)andtheproportionofeachparticlesize.Forinstance,3:1:2standsfora trimodalpreformmadeofthreepartsofsmall,onepartofmediumandtwopartsoflargeSiC particles.Unimodalpreformsaredesignatedwithonlythecorrespondingparticlesize.The SiCpowdersweremixedwith10wt.%ofSiO powders(particlesize,346m)and8wt.%of 2 dextrinasabinder.Themixtureswereplacedintoasteelmoldanduniaxiallycompacted usingapressureofabout3.5MPatoproducepreformswiththegeometryofplatesof3x4x 0.5cm.Withtheaimofpartiallyeliminatingthedextrin,thepreformswereheatedinanair furnacefortwohoursat125ºCandthenfortwomorehoursat225ºC.AnAl'Mg'Sialloy wasfabricatedinaninductionfurnacewithcommercialAl,MgandSimaterials.Table1 showsthechemicalcompositionofthefabricatedalloy. Table1Chemicalcompositionofthealuminiumalloy[wt.%]. Al Mg Si Fe Mn Zn Others Balance 15.5 13.6 0.99 0.15 0.13 2.61 Infiltrationtrialswereperformedinatubefurnacewithcontroloftheprocessatmosphere. Thepreformandalloy were placed in a ceramic container and the whole assembly was positionedinthefurnace.Thesystemwasheatedatarateof15ºC/minupto1100ºC,heldat thistemperaturefor60minandthencooleddownatthesameratetoroomtemperature.In ordertoenhancethewettingofthepreformbytheliquidalloyduringheatup,achangeinthe processing atmosphere (Ar →N ) was made on reaching 1000 ºC. Once the system was 2 cooleddowntoroomtemperature,thecompositeswerepreparedforphysical,mechanicaland microstructural characterization. The density was evaluated using Archimedes´ principle. Specimens were characterized by X'ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X'ray spectrometry (EDX). Mechanicalcharacterizationwasconductedusingfour'pointbendingtests(ASTMC1161'94 standard)andRockwellsuperficialhardness.Vickersmicrohardnesstestswereperformedon SiCparticlesof68(medium)and140(large)mincorporatedintothecomposites. Materials Science Forum Vol. 560 117 ResultsfromXRDrevealthepresenceoftheMgAl O , 2 4 AlN,MgOandMg Siphasesformedduringprocessing,inadditiontoAl,SiandSiC.These 2 phaseswereformedregardlessoftheparticlesizedistributionandparticlesizeratio.Atypical XRDpatternfromacompositespecimenwithbimodalsizedistributionisshowninFig.1.It isnoteworthythattheunwantedAl C phaseisnotdetectedinthecompositesmicrostructure. 4 3 Si AlN SiC Al Mg Si 400 2 MgAl O 2 4 MgO y 300 t i s n e 200 t n I 100 0 10 20 30 40 50 60 70 80 2θ(degree) Figure1.XRDpatternofacompositewithbimodalsizedistribution(1:1)(SiC,10and140 m). Themagnesiumaluminate(spinel)isformedbythereactionofthesilicaaddedtothe preformswithmagnesiumandaluminuminthealloy,accordingto: 2Al +2SiO +Mg =MgAl O +2Si (1) (l) 2(s) (l) 2 4(s) (s) AnalysisbySEMshowsthat,inatypicalmicrostructureofthecomposites,thespinelis present at the periphery of partially reacted SiO particles. Figure 2 shows the typical 2 microstructureofthecompositesandFigure3aisaphotomicrographshowingapartially reacted particle of SiO . Figure 3b is an EDX spectrum on the region corresponding to 2 MgAl O 2 4 Al SiC SiC Intermetallic 111100000000 ----mmmm Figure2.SEMphotomicrographshowingthetypicalmicrostructureofthe composites. Figure4showstheeffectofparticlesize distributiononthecompositesdensity.Inthisandthesubsequentfigures,thenumbers1,2 and3inthe'axisrefertounimodal,bimodalandtrimodaldistributions,respectively.The 118 Advanced Structural Materials III 3 measureddensities(intherangefrom2.77to2.91g/cm )aresimilartothosereportedby Chenetal.forcompositespreparedbythepressure'assistedinfiltrationtechnique[6].The SSii MgAl O 2 4 AAll 3 SiO 2 MMgg OO 555000---mmm Figure3.(a)SEMphotomicrographshowingapartiallyreactedSiO particle,and(b)EDX 2 spectruminazonecorrespondingtoMgAl O . 2 4 changeinthedensityofthecompositeswithdifferentparticlesizedistributionsisexplained intermsofthedegreeofpackingattainedwhenusingparticleswithdifferentsizesinthe preforms.Inregardtotheinfluenceoftheparticlesizeratioinagivenpreformonthedensity ofthecomposites,nosignificanteffectisobserved. ) 2,90 3m 2,88 c / r 2,86 g ( y t 2,84 i s n e 2,82 D 2,80 1 2 3 Particlesizedistribution Figure4.Averagedensitiesofthecompositesasafunctionofparticlesizedistribution. .Resultsfromfour'pointbendingtestsrevealthattheMOR doesnotsignificantlyincreasewhenthesizedistributionvariesfromunimodaltobimodal. However,anincreaseofabout16%isobservedwhenachangeismadetotrimodalsize distribution, as shown in Fig. 5. The average values of the moduli of rupture of the compositesare117±8,119±17and145±13forunimodal,bimodalandtrimodalsize distributions,respectively.TypicalvaluesofMORforsomespecimensareshowninTable2. 150 Table2.Modulusofruptureofcompositeswith 145 differentsizedistributionofreinforcements. 140 ) a 135 Particlesizeratioand MOR[MPa] P 130 M ( 125 distribution R 120 Unimodal(68Jm) 117±8 O 115 M 110 1:1 136±17 105 1:3 102±18 100 3:1:2 129±12 1 2 3 3:2:1 113±14 Particlesizedistribution 2:2:2 194±10 Figure5.Modulusofruptureasafunctionof particlesizedistribution.
no reviews yet
Please Login to review.