129x Filetype PDF File size 0.43 MB Source: www.ic.unicamp.br
MO434 - Deep Learning Fundamentals of (Deep) Neural Networks II Alexandre Xavier Falc˜ao Institute of Computing - UNICAMP afalcao@ic.unicamp.br Alexandre Xavier Falc˜ao MO434 - Deep Learning Agenda Aneural network with dense layers only – a Multi-Layer Perceptron (MLP). Activation and loss functions. Stochastic Gradient Descent (SGD) optimizer. The backpropagation algorithm. Alexandre Xavier Falc˜ao MO434 - Deep Learning Neural network with dense layers only Consider a neural network with L dense layers and N neurons at r layer 1 ≤ r ≤ L. Each neuron j ∈ [1,N ] of a layer r has a weight vector r wr r r r r ww =(w ,w ,...,w ) with bias w , j j0 j1 jNr−1 j0 the input of layer r is the vector yr−1 r−1 r−1 r−1 yy =(1,y , y , . . . , y ) and 1 2 N r−1 r yr−1 wr each perceptron j computes vj = hyy ,wwj i followed by f (vr), where f is a differentiable activation function. j Alexandre Xavier Falc˜ao MO434 - Deep Learning Examples of activation functions Rectified Linear Unit (ReLU) ReLU derivative f (v) = v v >0, f ′(v) = 1 v >0, 0 v ≤0. 0 v ≤0. Logistic (a > 0) Logistic derivative f (v) = 1 . f ′(v) = af(v)(1−f(v)). 1+e−av Hyperbolic tangent Hyperbolic tangent derivative 2 f ′(v) = 1−f2(v) f (v) = tanh(v) = 1+e−2v −1 SoftPlus derivative SoftPlus 1 f ′(v) = −v. f (v) = log (1+ev) 1+e e Alexandre Xavier Falc˜ao MO434 - Deep Learning
no reviews yet
Please Login to review.