jagomart
digital resources
picture1_Processing Pdf 179792 | Solutions Chapter2


 192x       Filetype PDF       File size 0.48 MB       Source: faculty.nps.edu


File: Processing Pdf 179792 | Solutions Chapter2
chapter 2 problem solutions discrete time processing of continuous time signals sampling a problem 2 1 problem consider a sinusoidal signal xt 3cos1000t0 1 and let us sample it at ...

icon picture PDF Filetype PDF | Posted on 30 Jan 2023 | 2 years ago
Partial capture of text on file.
                             Chapter 2: Problem Solutions
                   Discrete Time Processing of Continuous Time Signals
            Sampling
            à Problem 2.1.
            Problem:
             Consider a sinusoidal signal     xt  3cos1000t0.1
            and let us sample it at a frequency F  2kHz.
                                                 s
            a)  Determine and expression for the sampled sequence xn  xnT  and determine its Discrete 
            Time Fourier Transform X  DTFTxn;                              s
            b) Determine XF  FTxt;
            c) Recompute X from the XF and verify that you obtain the same expression as in a).
            Solution:
            a) xn  xt            3cos0.5n0.1. Equivalently, using complex exponentials,
                                 tnT
                                     s
                                                   j0.1  j0.5n         j0.1 j0.5n
                                    xn  1.5e          e        1.5e          e
            Therefore its DTFT becomes
                                                          j0.1                   j0.1         
                         X  DTFTxn  3e              3e             
                                                                          2                           2
            with 
                            j2F t
            b) Since FTe      0   FF  then
                                                 0
            2                                                                                      Solutions_Chapter2[1].nb
                                                j0.1                         j0.1
             for all F.         XF  1.5e          F  5001.5e              F  500
             c) Recall that X  DTFTxn and XF  FTxt are related as
                                                            
                                             X  F XFkF 
                                                         s                 s    FF 2
                                                          k                      s
             with F  the sampling frequency. In this case there is no aliasing, since all frequencies are contained 
                   s
             within F 2  1kHz. Therefore, in the interval  we can write
                      s                            X  F XF
                                                               s          FF 2
                                                                              s
             with F  2000Hz.  Substitute for XF from part b) to obtain
                   s
                                          j0.1                                 j0.1             
                 X  20001.5e             2000   500  1.5e            2000   500
                                                             2                                       2
             Now recall the property of the "delta" function: for any constant a  0,
                                                                    1       t
                                                       at  
             Therefore we can write                                a      a
                                                  j0.1                    j0.1          
                                   X  3e          3e              
                                                                   2                            2
             same as in b).
             à Problem 2.2.
             Problem
              Repeat Problem 1 when the continuous time signal is
             Solution                               xt  3cos3000t
             Following the same steps:
             a) xn  3cos1.5n. Notice that now we have aliasing, since 
                                 F
                                  s
             F 1500Hz   1000Hz. Therefore, as shown in the figure below, there is an aliasing at 
              0                  2
             F F 20001500Hz500Hz. Therefore after sampling we have the same signal as in 
              s     0
             Problem 1.1, and everything follows.
                       Solutions_Chapter2[1].nb                                                                                                                                                                                     3
                                                                                                                   X(F)
                                                                               1.5                                               1.5                   F(kHz)
                                                                                                                       F X(FkF)
                                                                                                                          s                                   s
                                                                                                                               k
                                                                                  1.5              0.5 0.5                         1.5                    F(kHz)
                                                                                 F                                           F
                                                                             s  1.0                                         s   1.0
                                                                                  2                                           2
                        à Problem 2.3. 
                        Problem
                        For each XF  FTxt shown, determine X  DTFTxn, where 
                        xn  xnT  is the sampled sequence. The Sampling frequency F  is given for each case.
                                                      s                                                                                                             s
                        a) XF F1000,   F  3000Hz;
                                                                                      s
                        b) XF F500F500,  F  1200Hz
                                                                                                                   s
                                                                         F
                        c) XF  3rect,   F  2000Hz;
                                                                      1000                 s
                                                                         F
                        d) XF  3rect,  F  1000Hz;
                                                                      1000                s
                                                                 F3000                                  F3000
                        e) XF  rect  rect,   F                                                   3000Hz;
                                                                   1000                                    1000                   s
                        Solution
                        For all these problems use the relation
                                                                                      X  F   X F 2kF 
                                                                                                            s                         s                          s
                                                                                                               k
                                                                                   3000                                                                                     2
                        a)  X  3000   1000  k3000  2    k2;
                                                              k                     2                                                           k                         3
            4                                                                                 Solutions_Chapter2[1].nb
                                        1200                             1200
            b) X  1200   500  k1200    500  k1200
                               k        2                              2
                            
                     2   k2 k2
                           k          0                    0
               2500 1200 1.2;
              0
                                              20002      2000                        k2
            c) X  20003rect  k   6000rect shown 
                                  k            1000         1000            k            
            below.
                                                             X()
                         2                                                  2         
                                                   2            2
                                              10002      1000                        k2
            d) X  10003rect  k   3000rect shown below
                                  k            1000         1000            k           2
                                                                  X()
                            2                                                       2           
                                          300023000       3000              300023000      3000
            e) X  3000rect  k   rect  k  
                               k              1000            1000                  1000            1000
                                         3                        3
                     3000rect 33krect 33k
                             k          2                        2
                                          k2
                       6000rect
            shown below.      k          23
                                                                     X()
                                                      6000
                          2                           2        2                        2            
                                                              6       6
The words contained in this file might help you see if this file matches what you are looking for:

...Chapter problem solutions discrete time processing of continuous signals sampling a consider sinusoidal signal xt cost and let us sample it at frequency f khz s determine expression for the sampled sequence xn xnt its fourier transform x dtftxn b xf ftxt c recompute from verify that you obtain same as in solution cos n equivalently using complex exponentials tnt j e therefore dtft becomes with jf t since fte ff then nb all recall are related xfkf k this case there is no aliasing frequencies contained within interval we can write hz substitute part to now property delta function any constant repeat when following steps notice have shown figure below an hzhz after everything follows fkf each where given rect d these problems use relation kf...

no reviews yet
Please Login to review.