jagomart
digital resources
picture1_M257 316 2012 Lecture 14


 120x       Filetype PDF       File size 0.07 MB       Source: personal.math.ubc.ca


File: M257 316 2012 Lecture 14
c 1 introductory lecture notes on partial dierential equations anthony peirce not to be copied used or revised without explicit written permission from the copyright owner lecture 14 half range ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                     c                                               1
          Introductory lecture notes on Partial Differential Equations - ⃝ Anthony Peirce.
          Not to be copied, used, or revised without explicit written permission from the copyright owner.
               Lecture 14: Half Range Fourier Series: even and odd
                                                 functions
                                               (Compiled 4 August 2017)
            In this lecture we consider the Fourier Expansions for Even and Odd functions, which give rise to cosine and sine half
            range Fourier Expansions. If we are only given values of a function f(x) over half of the range [0,L], we can define two
            different extensions of f to the full range [−L,L], which yield distinct Fourier Expansions. The even extension gives rise
            to a half range cosine series, while the odd extension gives rise to a half range sine series.
          Key Concepts: Even and Odd Functions; Half Range Fourier Expansions; Even and Odd Extensions
                                          14.1 Even and Odd Functions
          Even: f(−x) = f(x)
          Odd: f(−x) = −f(x)
          14.1.1 Integrals of Even and Odd Functions
                                          L          0         L
                                         ∫ f(x)dx= ∫ f(x)dx+∫ f(x)dx                             (14.1)
                                        −L         −L         0
                                                    L
                                                    ∫ [          ]
                                                  =   f(−x)+f(x) dx                              (14.2)
                                                    0
                                                     L
                                                  = 2∫ f(x)dx f even                            (14.3)
                                                     0
                                                      0          f odd.
          Notes: Let E(x) represent an even function and O(x) an odd function.
           (1) If f(x) = E(x)·O(x) then f(−x) = E(−x)O(−x) = −E(x)O(x) = −f(x) ⇒ f is odd.
           (2) E (x)·E (x) → even.
                1     2
           (3) O (x)·O (x) → even.
                1     2
           (4) Any function can be expressed as a sum of an even part and an odd part:
                                              1 [          ]  1 [         ]
                                        f(x) = 2 f(x)+f(−x) +2 f(x)−f(−x) .                      (14.4)
                                               |     {z    }   |    {z    }
                                                  even part       odd part
          2
                          1[            ]              1[           ]
          Check: Let E(x) = 2 f(x)+f(−x) . Then E(−x) = 2 f(−x)+f(x) = E(x) even. Similarly let
                                                 1[           ]
                                          O(x) = 2 f(x)−f(−x)                                        (14.5)
                                                 1[           ]
                                         O(−x)= 2 f(−x)−f(x) =−O(x) odd.                             (14.6)
                           14.2 Consequences of the Even/Odd Property for Fourier Series
           (I) Let f(x) be Even-Cosine Series:
                                             L                     L
                                     a = 1 ∫ f(x)cos(nπx) dx= 2 ∫ f(x)cos(nπx) dx                    (14.7)
                                      n   L   | {z }   L        L             L
                                           −L even                0
                                             L
                                     b = 1 ∫ f(x)sin(nπx) dx=0.                                      (14.8)
                                      n   L            L
                                           −L |     {z    }
                                                   odd
               Therefore
                                                                     L
                                             ∞       (   )          ∫        (    )
                                 f(x) = a0 + ∑ancos nπx ;     an = 2  f(x)cos nπx dx.                (14.9)
                                        2   n=1        L          L             L
                                                                    0
           (II) Let f(x) be Odd-Sine Series:
                                             L
                                     a = 1 ∫ f(x)cos(nπx) dx=0                                      (14.10)
                                      n   L            L
                                           −L |     {z    }
                                                   odd
                                             L                     L
                                     b = 1 ∫ f(x)sin(nπx) dx= 2 ∫ f(x)sin(nπx) dx
                                      n   L            L        L            L
                                           −L |     {z    }       0
                                                   even
               Therefore
                                                                   L
                                           ∞       (    )         ∫        (    )
                                     f(x) = ∑b sin nπx ; b = 2      f(x)sin nπx dx.
                                               n     L       n  L             L
                                           n=1                    −0
           (III) Since any function can be written as the sum of an even and odd part, we can interpret the cos and sin series
               as even/odd:
                                                 even             odd
                                     f(x) = 1[           ]    1[           ]                        (14.11)
                                            2 f(x)+f(−x)    +2 f(x)−f(−x)
                                           {      ∞            } {∞                }
                                         = a0 +∑ancos(nπx) + ∑bnsin(nπx)
                                             2   n=1        L        n=1       L
                                                                   Fourier Series                                                      3
                   where
                                                  L                                          L
                                         a = 2 ∫ 1[f(x)+f(−x)]cos(nπx) dx= 1 ∫ f(x)cos(nπx) dx
                                          n    L    2                         L          L                 L
                                                 0                                         −L
                                                  L                                          L
                                         b = 2 ∫ 1[f(x)−f(−x)]sin(nπx) dx= 1 ∫ f(x)sin(nπx) dx.
                                          n    L    2                        L           L                L
                                                 0                                         −L
                                                         14.3 Half-Range Expansions
             If we are given a function f(x) on an interval [0,L] and we want to represent f by a Fourier Series we have two
             choices - a Cosine Series or a Sine Series.
             Cosine Series:
                                                                        ∞         (      )
                                                                  a     ∑           nπx
                                                          f(x) = 0 +        a cos                                                (14.12)
                                                                  2          n       L
                                                                       n=1
                                                                     L
                                                            a = 2 ∫ f(x)cos(nπx) dx.                                             (14.13)
                                                             n    L                L
                                                                    0
             Sine Series:
                                                                   ∞        (     )
                                                          f(x) = ∑b sin nπx                                                      (14.14)
                                                                       n       L
                                                                  n=1
                                                                     L
                                                            bn = 2 ∫ f(x)sin(nπx) dx.                                            (14.15)
                                                                  L                L
                                                                     0
             Example 14.1 Expand f(x) = x, 0 < x < 2 in a half-range (a) Sine Series, (b) Cosine Series.
              (a) Sine Series: (L=2)
                                                                 L
                                                        bn = 2 ∫ f(t)sin nπtdt                                                   (14.16)
                                                              L             ℓ
                                                                0
                                                               2
                                                           =∫ tsin nπtdt                                                         (14.17)
                                                                      2
                                                              0
                                                                                   2
                                                                          2       ∫
                                                                tcos nπt       2        nπ
                                                                      2  
                                                           =− (nπ)  +               cos    tdt                                  (14.18)
                                                                    2         nπ         2
                                                                          0       0
                                                                              ( )2                
                                                                4                2         (nπ ) 2
                                                           =− cos(nπ)+                 sin      t                               (14.19)
                                                                nπ              nπ           2    
                                                                                                   0
                                                                4       n
                                                           =−nπ(−1)                                                              (14.20)
                    Therefore
                                                                       ∞        n+1     (    )
                                                            f(t) = 4 ∑ (−1)         sin  nπt .                                   (14.21)
                                                                    π n=1     n           2
               4
                                                                                             ∞         n+1      (     )
                                                                          f(1) = 1 = 4 ∑ (−1)               sin   nπ                                     (14.22)
                                                                                         π n=1       n              2
                                                                therefore π = 1− 1 + 1 − 1 +···                                                          (14.23)
                                                                              4          3     5    7
                 (b) Cosine Series: (L=2)
                                                                2            
                                                              ∫             2 2
                                                            2              t 
                                                     a =          tdt =        =2                                                                       (14.24)
                                                       0    2              2 
                                                               0              0
                                                             2                   ( )                       ( ) 2
                                                            ∫                                                      ∫
                                                                     nπ              2           nπ 2          2            nπ
                                                     a =       tcos      tdt =            tsin↗     t −                sin     tdt
                                                      n                2            nπ            2          nπ             2
                                                                                                      0
                                                            0                                                      0
                                                               ( )2                 2
                                                                  2           nπ           4
                                                         =+              cos      t  =         {cosnπ−1}                                                (14.25)
                                                                                          2 2
                                                                 nπ            2        n π
                                                                                    0
                       Therefore
                                                                                    ∞ [        n      ]
                                                                 f(t) = 1+ 4 ∑ (−1) −1 cosnπt                                                            (14.26)
                                                                               π2             n2              2
                                                                                   n=1
                                                                                    ∞
                                                                       =1− 8 ∑cos(2n+1)πt/(2n+1)2.                                                       (14.27)
                                                                               π2                2
                                                                                   n=0
                       The cosine series converges faster than Sine Series.
                                                                              ∞                         2
                                                     f(2) = 2 = 1+ 8 ∑                 1      ,       π =1+ 1 + 1 +···
                                                                           2                 2                      2      2
                                                                         π n=0 (2n+1)                  8           3      5
               Example 14.2 Periodic Extension: Assume that f(x) = x, 0 < x < 2 represents one full period of the function so
               that f(x+2) = f(x). 2L = 2 ⇒ L = 1.
                                                                  L                1                2              
                                                                 ∫                ∫               ∫              2 2
                                                              1                                                x 
                                                       a0 =         f(x)dx =         f(x)dx =        xdx=            =2                                 (14.28)
                                                              L                                                 2 
                                                                −L               −1               0                 0
                                                                                             since f(x+2) = f(2).                                        (14.29)
The words contained in this file might help you see if this file matches what you are looking for:

...C introductory lecture notes on partial dierential equations anthony peirce not to be copied used or revised without explicit written permission from the copyright owner half range fourier series even and odd functions compiled august in this we consider expansions for which give rise cosine sine if are only given values of a function f x over can dene two dierent extensions full yield distinct extension gives while key concepts integrals l dx let e represent an o then is any expressed as sum part z check similarly consequences property i cos n b sin therefore ancos ii iii since interpret bnsin where interval want by have choices bn example expand t tdt...

no reviews yet
Please Login to review.