234x Filetype PDF File size 1.09 MB Source: etacar.put.poznan.pl
Math 2: Linear Algebra Problems, Solutions and Tips FORTHEELECTRONICSANDTELECOMMUNICATIONSTUDENTS Chosen, selected and prepared by: Andrzej Mackiewicz ´ Technical University of Poznan ´ 2 Contents 1 Complex Numbers (Exercises) 7 2 Systems of Linear Equations (Exercises) 17 2.1 PracticeProblems......................... 17 3 Row Reduction and Echelon Forms (Exercises) 23 3.1 Practiceproblems.......................... 23 3.2 SolvingSeveralSystemsSimultaneously ............. 26 4 Vector equations (Exercises) 31 4.1 Practiceproblems.......................... 31 4.2 Exercises .............................. 35 5 The Matrix Equation Ax=b (Exercises) 39 5.1 PracticeProblems ......................... 39 5.2 Exercises .............................. 43 6 Solutions Sets of Linear Systems (Exercises) 47 6.1 PracticeProblems ......................... 47 6.2 Exercises .............................. 52 7 Linear Independence (Exercises) 55 7.1 PracticeProblems ......................... 55 7.2 Exercises .............................. 58 8 Introduction to Linear Transformations (Exercises) 61 8.1 PracticeProblems ......................... 61 8.2 Exercises .............................. 66 9 The Matrix of a Linear Transformation (Exercises) 69 9.1 PracticeProblems ......................... 69 9.2 Exercises .............................. 72 10 Matrix Operations (Exercises) 73 4Contents 10.1 Diagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.2 Matrix addition and scalar multiplication . . . . . . . . . . . . 73 10.3Matrixmultiplication........................ 74 10.4Whydoitthisway......................... 78 10.5Matrixalgebra ........................... 79 10.6Exercises .............................. 83 11 The Inverse of a Matrix (Exercises) 87 11.1PracticeProblems ......................... 87 11.1.1Propertiesoftheinverse.................. 90 11.1.2 Inverses and Powers of Diagonal Matrices . . . . . . . . 92 −1 11.1.3 An Algorithm for finding ............... 92 11.2Exercises .............................. 94 12 Characterizations of Invertible Matrices (Exercises) 97 12.1PracticeProblems ......................... 97 12.2Exercises .............................. 99 13 Introduction to Determinants (Exercises) 105 13.1PracticeProblems .........................105 13.2ApplicationtoEngineering ....................109 13.3Exercises ..............................110 14 Eigenvectors and Eigenvalues (Exercises) 113 14.1PracticeProblems .........................113 14.2Exercises ..............................115 15 The Characteristic Equation (Exercises) 117 15.1PracticeProblems .........................117 15.2Exercises ..............................119 Bibliography 123
no reviews yet
Please Login to review.