jagomart
digital resources
picture1_Limits Calculus Pdf 174677 | Book169


 156x       Filetype PDF       File size 0.87 MB       Source: www.math.usm.edu


File: Limits Calculus Pdf 174677 | Book169
mat169 calculus iii with analytic geometry james v lambers january 25 2023 2 contents 1 sequences and series 7 1 1 introduction 7 1 1 1 sequences and series 7 ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
          MAT169: Calculus III with Analytic Geometry
                    James V. Lambers
                     January 25, 2023
               2
                        Contents
                        1 Sequences and Series                                                              7
                            1.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .      7
                                  1.1.1   Sequences and Series . . . . . . . . . . . . . . . . . . .        7
                                  1.1.2   Vectors and the Geometry of Space . . . . . . . . . . .           8
                                  1.1.3   Parametric Equations and Polar Coordinates . . . . .              9
                                  1.1.4   Example: Fibonacci Numbers . . . . . . . . . . . . . .           10
                            1.2   Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      13
                                  1.2.1   What is a Sequence? . . . . . . . . . . . . . . . . . . .        13
                                  1.2.2   WhyDoWeNeedSequences? . . . . . . . . . . . . . .                14
                                  1.2.3   Recognizing Sequences . . . . . . . . . . . . . . . . . .        14
                                  1.2.4   Limits of Sequences      . . . . . . . . . . . . . . . . . . .   16
                                  1.2.5   Relation to Limits of Functions . . . . . . . . . . . . .        18
                                  1.2.6   Testing Convergence of Sequences         . . . . . . . . . . .   19
                                  1.2.7   Alternating Sequences . . . . . . . . . . . . . . . . . .        21
                                  1.2.8   Growth Rates of Functions . . . . . . . . . . . . . . .          21
                                  1.2.9   Geometric Sequences . . . . . . . . . . . . . . . . . . .        22
                                  1.2.10 Recursively Defined Sequences . . . . . . . . . . . . .            22
                                  1.2.11 Bounded and Monotonic Sequences . . . . . . . . . . .             23
                                  1.2.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . .         27
                            1.3   Series   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   29
                                  1.3.1   What is a Series? . . . . . . . . . . . . . . . . . . . . .      29
                                  1.3.2   WhyDoWeNeedSeries? . . . . . . . . . . . . . . . .               32
                                  1.3.3   Geometric Series . . . . . . . . . . . . . . . . . . . . .       32
                                  1.3.4   Telescoping Series     . . . . . . . . . . . . . . . . . . . .   35
                                  1.3.5   Harmonic Series . . . . . . . . . . . . . . . . . . . . .        36
                                  1.3.6   Summary . . . . . . . . . . . . . . . . . . . . . . . . .        37
                            1.4   Basic Convergence Tests . . . . . . . . . . . . . . . . . . . . .        38
                                  1.4.1   nth Term Test for Divergence . . . . . . . . . . . . . .         38
                                  1.4.2   Combinations of Series . . . . . . . . . . . . . . . . . .       38
                                                                  3
                                    4                                                                      CONTENTS
                                              1.4.3    The Integral Test . . . . . . . . . . . . . . . . . . . . .     39
                                              1.4.4    The Comparison Test . . . . . . . . . . . . . . . . . .         43
                                        1.5   Other Convergence Tests . . . . . . . . . . . . . . . . . . . . .        46
                                              1.5.1    The Alternating Series Test . . . . . . . . . . . . . . .       46
                                              1.5.2    Estimating Error in Alternating Series . . . . . . . . .        48
                                              1.5.3    Absolute Convergence . . . . . . . . . . . . . . . . . .        49
                                              1.5.4    The Ratio Test . . . . . . . . . . . . . . . . . . . . . .      50
                                              1.5.5    The Root Test . . . . . . . . . . . . . . . . . . . . . .       51
                                              1.5.6    Summary . . . . . . . . . . . . . . . . . . . . . . . . .       52
                                        1.6   Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . .     54
                                              1.6.1    What is a Power Series? . . . . . . . . . . . . . . . . .       54
                                              1.6.2    Convergence of Power Series       . . . . . . . . . . . . . .   54
                                              1.6.3    The Radius of Convergence . . . . . . . . . . . . . . .         55
                                              1.6.4    Representing Functions as Power Series . . . . . . . .          56
                                              1.6.5    Differentiation and Integration of Power Series . . . .          59
                                              1.6.6    Summary . . . . . . . . . . . . . . . . . . . . . . . . .       61
                                        1.7   Taylor and Maclaurin Series . . . . . . . . . . . . . . . . . . .        62
                                              1.7.1    Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . .      62
                                              1.7.2    Computing Taylor Series . . . . . . . . . . . . . . . . .       70
                                              1.7.3    Summary . . . . . . . . . . . . . . . . . . . . . . . . .       73
                                        1.8   Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     75
                                    2 Vectors and the Geometry of Space                                               79
                                        2.1   Three-Dimensional Coordinate Systems . . . . . . . . . . . .             79
                                              2.1.1    Points in Three-Dimensional Space . . . . . . . . . . .         79
                                              2.1.2    Planes in Three-Dimensional Space . . . . . . . . . . .         80
                                              2.1.3    Plotting Points in xyz-space . . . . . . . . . . . . . . .      81
                                              2.1.4    The Distance Formula . . . . . . . . . . . . . . . . . .        81
                                              2.1.5    Equations of Surfaces     . . . . . . . . . . . . . . . . . .   82
                                              2.1.6    Summary . . . . . . . . . . . . . . . . . . . . . . . . .       84
                                        2.2   Vectors    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   85
                                              2.2.1    Combining Vectors . . . . . . . . . . . . . . . . . . . .       86
                                              2.2.2    Components . . . . . . . . . . . . . . . . . . . . . . .        87
                                              2.2.3    Summary . . . . . . . . . . . . . . . . . . . . . . . . .       94
                                        2.3   The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . .        95
                                              2.3.1    Properties . . . . . . . . . . . . . . . . . . . . . . . . .    97
                                              2.3.2    Orthogonality . . . . . . . . . . . . . . . . . . . . . . .     98
                                              2.3.3    Projections . . . . . . . . . . . . . . . . . . . . . . . .     98
                                              2.3.4    Summary . . . . . . . . . . . . . . . . . . . . . . . . . 101
                                        2.4   The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . 102
The words contained in this file might help you see if this file matches what you are looking for:

...Mat calculus iii with analytic geometry james v lambers january contents sequences and series introduction vectors the of space parametric equations polar coordinates example fibonacci numbers what is a sequence whydoweneedsequences recognizing limits relation to functions testing convergence alternating growth rates geometric recursively dened bounded monotonic summary whydoweneedseries telescoping harmonic basic tests nth term test for divergence combinations integral comparison other estimating error in absolute ratio root power radius representing as dierentiation integration taylor maclaurin s theorem computing review three dimensional coordinate systems points planes plotting xyz distance formula surfaces combining components dot product properties orthogonality projections cross...

no reviews yet
Please Login to review.