jagomart
digital resources
picture1_Matrix Pdf 174372 | Gilchrist


 143x       Filetype PDF       File size 0.16 MB       Source: www.gcsu.edu


File: Matrix Pdf 174372 | Gilchrist
some results on fuzzy matrices clayton gilchrist clayartgilchrist gmail com under the supervision of dr simplice tchamna department of mathematics georgia college milledgeville ga 31061 simplice tchamna gcsu edu abstract ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                                               Some Results on Fuzzy Matrices
                                                            Clayton Gilchrist
                                                         clayartgilchrist@gmail.com
                                           Under the supervision of Dr. Simplice Tchamna
                                                        Department of Mathematics
                                                  Georgia College, Milledgeville, GA 31061
                                                         simplice.tchamna@gcsu.edu
                 Abstract
                 A fuzzy matrix is a matrix whose entries are real numbers in the interval [0, 1]. We study prop-
                 erties of fuzzy matrices. Particular attention is given to the case of K-idempotent fuzzy matrices.
                 We characterize 2-by-2 K-idempotent fuzzy matrices and n-by-n K-idempotent triangular fuzzy
                 matrices.
                 Keywords: Fuzzy matrix, Fuzzy determinant, K−idempotence.
                 1. Introduction
                    Fuzzy Matrix Theory was first introduced by Michael G. Thomason in 1977 as a branch of
                 Fuzzy Set Theory, which was developed by L.A. Zadeh twelve years prior [6]. The motivation
                 behind Zadeh’s exploration of fuzzy sets was the fact that in physical reality, there exist objects
              5  that cannot be placed under clearly defined criteria of membership. For instance, Zadeh points
                 to the ”class of all real numbers which are much greater than 1” [7]. It would be impossible to
                 precisely define such a set of real numbers, and therefore we would consider this to be a fuzzy set.
                    Fuzzy matrices have applications in a broad spectrum of fields. For instance, fuzzy matrices
                 have proven very useful within the medical field. Since there is often uncertainty in information
             10  about patients, symptoms, and diagnoses, fuzzy matrices assist in more accurately representing
                 such uncertainty while also pointing to the most likely candidate for diagnosis. Meenakshi and
                 Kaliraja, in their work on interval valued fuzzy matrices for medical diagnosis, state that by using
                 fuzzy matrices with sets of symptoms, diseases, and patients, we can calculate diagnosis scores both
                 for and against respective diseases [4].
             15     Fuzzy matrices have also been used in the agricultural field to determine crops that are the most
                 well-suited to a specific patch of land. This takes into consideration the biophysical, economic,
                 social, and environmental impacts of a given crop [1]. Fuzzy matrices are extremely useful in
                 dealing with this large amount of information. Like Agriculture and Medicine, any field dealing
                                               A
                 Preprint submitted to Journal of LT X Templates                                             May 15, 2019
                                                 E
                             with uncertainty in information and decision-making could possibly benefit from the use of fuzzy
                      20     matrices.
                                    This paper will be focused on fuzzy matrices and some definitions and propositions related
                             to them.             Topics will include fuzzy matrix operations, fuzzy determinants, fuzzy traces, and
                             K−idempotence.
                             2. Fuzzy Matrices
                      25     Definition 2.1.                      (1) Let A be an n×m matrix defined by
                                                                                                         a11         a12       · · ·     a1m
                                                                                                                                                 
                                                                                                         a21         a22       · · ·     a2m
                                                                                                A=                                               
                                                                                                          .            .       .            .    
                                                                                                          .            .         ..         .    
                                                                                                              .         .                    .
                                                                                                         an1 an2 ··· anm:
                                        The matrix A is a fuzzy matrix if and only if aij ∈ [0;1] for 1 ≤ i ≤ n and 1 ≤ j ≤ m: In
                                        other words, any n × m matrix A is a fuzzy matrix if the elements of A are in the interval
                                        [0,1]. [3]
                           (2) We define fuzzy addition +, fuzzy multiplication ·, and fuzzy subtraction − as follows:
                                                                                                a+b = max(a;b);
                                                                                                  a·b = min(a;b);                          and
                                                                                                                    
                                                                                                a−b = aifa>b
                      30     [5]                                                                                    0 if a ≤ b:
                             Proposition 2.2. Let A;B;C be three n×n fuzzy matrices. With the fuzzy addition defined in
                             Definition 2.1, we have the following:
                                (1) A+B =B+A(Commutativity),
                                (2) (A+B)+C =A+(B+C) (Associativity),
                      35        (3) A+0=0+A=A(Additive Identity).
                                                          a            a         · · ·    a                   b           b        · · ·     b                          c           c        · · ·     c     
                                                                11        12                  1n                     11        12                 1n                             11        12                 1n
                                                                                                                                                                                                             
                                                          a            a         · · ·    a                   b           b        · · ·     b                          c           c        · · ·     c     
                                                                21        22                  2n                     21        22                 2n                             21        22                 2n
                             Proof. LetA =                                                       , B =                                             , andC =                                                  .
                                                           .             .       .           .                 .            .       .          .                         .            .       .          .   
                                                           .             .         ..        .                 .            .        ..        .                         .            .        ..        .   
                                                                .         .                   .                      .         .                  .                              .         .                  .
                                                          a           a          · · ·    a                   b           b        · · ·     b                          c           c        · · ·     c     
                                                                n1        n2                 nn                      n1       n2                  nn                             n1       n2                  nn
                                                                                                                        2
                                    (1) Observe the following:
                                                                                   a           a         · · ·     a  b                     b        · · ·     b     
                                                                                        11        12                  1n               11        12                 1n
                                                                                                                                                                     
                                                                                   a           a         · · ·     a  b                     b        · · ·     b     
                                                                                        21        22                  2n               21        22                 2n
                                                            A+B =                                                        +                                           
                                                                                    .            .        .          .     .                  .       .          .   
                                                                                    .            .         ..        .     .                  .         ..       .   
                                                                                        .         .                   .                .         .                  .
                                                                                   a           a         · · ·     a  b                     b        · · ·     b     
                                                                                        n1        n2                  nn               n1        n2                 nn
                                                                                   max(a ;b ) max(a ;b ) ··· max(a ;b )
                                                                                                  11     11                    12     12                              1n     1n
                                                                                                                                                                                  
                                                                                   max(a ;b ) max(a ;b ) ··· max(a ;b )
                                                                                                  21     21                    22     12                              2n     2n
                                                                            =                                                                                                     
                                                                                                 .                            .                .                     .            
                                                                                                 .                            .                  ..                  .            
                                                                                                  .                            .                                      .
                                                                                   max(a ;b ) max(a ;b ) ··· max(a ;b )
                                                                                                  n1     n1                    n2     n2                             nn nn
                             On the other hand,
                                                                                  b           b        · · ·     b      a                 a         · · ·     a 
                                                                                       11       12                  1n               11        12                  1n
                                                                                                                                                                    
                                                                                  b           b        · · ·     b      a                 a         · · ·     a 
                                                                                       21       22                  2n               21        22                  2n
                                                           B+A =                                                       +                                            
                                                                                   .            .       .          .     .                  .        .          .   
                                                                                   .            .        ..        .     .                  .         ..        .   
                                                                                       .         .                  .                .         .                   .
                                                                                  b          b         · · ·     b      a                 a         · · ·     a 
                                                                                       n1       n2                  nn               n1        n2                  nn
                                                                                  max(b ;a ) max(b ;a ) ··· max(b ;a )
                                                                                                 11     11                    12     12                             1n       1n
                                                                                                                                                                                 
                                                                                  max(b ;a ) max(b ;a ) ··· max(b ;a )
                                                                                                 21     21                    22     12                             2n       2n
                                                                           =                                                                                                     :
                                                                                                .                            .                 .                    .            
                                                                                                .                            .                  ..                  .            
                                                                                                 .                            .                                      .
                                                                                  max(b ;a ) max(b ;a ) ··· max(b ;a )
                                                                                                n1      n1                   n2      n2                             nn       nn
                             Thus A+B=B+A:Itfollows that the addition of fuzzy matrices is commutative.
                      40
                                                                                                                        3
                                    (2) Observe the following:
                                                                a              a         · · ·     a  b                     b        · · ·     b      c11 c12 ··· c1n
                                                                         11        12                  1n               11        12                 1n
                                                                                                                                                                                                    
                                                                a              a         · · ·     a  b                     b        · · ·     b      c21 c22 ··· c2n
                                                                         21        22                  2n               21        22                 2n
                             (A+B)+C =                                                                   +                                           +                                              
                                                                 .               .       .           .     .                  .       .          .     .                     .       .          .   
                                                                 .               .         ..        .     .                  .        ..        .     .                     .        ..        .   
                                                                         .         .                   .                .         .                  .                    .         .                  .
                                                                a              a         · · ·    a  b                      b        · · ·     b      c                   c         · · ·     c     
                                                                         n1        n2                  nn               n1       n2                  nn                   n1       n2                  nn
                                                                max(a ;b ) max(a ;b ) ··· max(a ;b )                                                                   c          c         · · ·     c     
                                                                               11     11                    12     12                              1n      1n                11        12                 1n
                                                                                                                                                                                                            
                                                                max(a ;b ) max(a ;b ) ··· max(a ;b )                                                                   c          c         · · ·     c     
                                                                               21     21                    22     12                              2n      2n                21        22                 2n
                                                         =                                                                                                     +                                            
                                                                              .                            .                 .                    .              .                  .       .           .   
                                                                              .                            .                  ..                  .              .                  .         ..        .   
                                                                               .                            .                                      .                          .        .                   .
                                                                max(a ;b ) max(a ;b ) ··· max(a ;b )                                                                   c          c         · · ·    c      
                                                                               n1     n1                    n2     n2                              nn nn                     n1        n2                 nn
                                                                max(max(a ;b );c ) max(max(a ;b );c ) ···                                                                  max(max(a ;b );c )
                                                                                         11     11       11                             12      12       12                                       1n     1n        1n
                                                                                                                                                                                                                        
                                                                max(max(a ;b );c ) max(max(a ;b );c ) ···                                                                  max(max(a ;b );c )
                                                                                         21     21       21                             22      22       22                                       2n     2n        2n
                                                         =                                                                                                                                                              
                                                                                       .                                               .                         .                               .                      
                                                                                       .                                               .                           ..                            .                      
                                                                                        .                                               .                                                         .
                                                                max(max(a ;b );c ) max(max(a ;b );c                                                              · · ·    max(max(a ;b );c )
                                                                                        n1      n1       n1                              n2     n2        n2                                     nn nn             nn
                                                                max(a ;b ;c ) max(a ;b ;c ) ···                                                     max(a ;b ;c )
                                                                               11      11     11                   12      12     12                             1n      1n      1n
                                                                                                                                                                                      
                                                                max(a ;b ;c ) max(a ;b ;c ) ···                                                     max(a ;b ;c )
                                                                               21      21     21                   22      22     22                             2n      2n      2n
                                                         =                                                                                                                            
                                                                                  .                                   .                    .                        .                 
                                                                                  .                                   .                     ..                      .                 
                                                                                   .                                   .                                             .
                                                                max(a ;b ;c ) max(a ;b ;c                                                 · · ·     max(a ;b ;c )
                                                                               n1     n1      n1                    n2     n2      n2                            nn nn nn
                                                                a           a         · · ·     a  b                        b        · · ·     b      c                 c        · · ·     c     
                                                                     11        12                  1n                   11        12                 1n               11        12                 1n
                                                                                                                                                                                                 
                                                                a           a         · · ·     a  b                        b        · · ·     b      c                 c        · · ·     c     
                                                                     21        22                  2n                   21        22                 2n               21        22                 2n
                             A+(B+C) =                                                                +                                              +                                           
                                                                 .            .        .          .     .                     .       .          .     .                  .       .          .   
                                                                 .            .         ..        .     .                     .        ..        .     .                  .         ..       .   
                                                                     .         .                   .                    .         .                  .                .         .                  .
                                                                a           a         · · ·     a  b                        b        · · ·     b      c                 c        · · ·     c     
                                                                     n1        n2                  nn                   n1       n2                  nn               n1       n2                  nn
                                                                a           a         · · ·     a  max(b ;c ) max(b ;c ) ··· max(b ;c )
                                                                     11        12                  1n                         11     11                    12     12                             1n      1n
                                                                                                                                                                                                            
                                                                a           a         · · ·     a  max(b ;c ) max(b ;c ) ··· max(b ;c )
                                                                     21        22                  2n                         21     21                    22     12                             2n      2n
                                                         =                                            +                                                                                                     
                                                                 .            .        .          .                        .                            .                .                    .             
                                                                 .            .         ..        .                        .                            .                  ..                 .             
                                                                     .         .                   .                          .                            .                                     .
                                                                a           a         · · ·     a  max(b ;c ) max(b ;c ) ··· max(b ;c )
                                                                     n1        n2                  nn                         n1     n1                   n2      n2                             nn nn
                                                                max(a ;max(b ;c )) max(a ;max(b );c )) ···                                                                   max(a ;max(b ;c ))
                                                                                11               11     11                     12               12       12                               1n                1n     1n
                                                                                                                                                                                                                          
                                                                max(a ;max(b );c ))                                max(a ;max(b ;c )) ···                                    max(a ;max(b ;c ))
                                                                               21               21       21                     22               22     22                                2n                2n     2n
                                                         =                                                                                                                                                                
                                                                                        .                                               .                           .                              .                      
                                                                                        .                                               .                            ..                            .                      
                                                                                         .                                               .                                                          .
                                                                max(a ;max(b ;c )) max(a ;max(b ;c )) ··· max(a ;max(b ;c ))
                                                                               n1               n1      n1                      n2               n2      n2                               nn               nn nn
                                                                max(a ;b ;c ) max(a ;b ;c ) ···                                                      max(a ;b ;c )
                                                                               11      11     11                    12     12      12                             1n      1n      1n
                                                                                                                                                                                       
                                                                max(a ;b ;c ) max(a ;b ;c ) ···                                                      max(a ;b ;c )
                                                                               21      21     21                    22     22      22                             2n      2n      2n
                                                         =                                                                                                                             :
                                                                                  .                                   .                     .                        .                 
                                                                                  .                                   .                       ..                     .                 
                                                                                   .                                   .                                              .
                                                                max(a ;b ;c ) max(a ;b ;c ) ··· max(a ;b ;c )
                                                                               n1     n1      n1                   n2      n2      n2                             nn nn nn
                                                                                                                        4
The words contained in this file might help you see if this file matches what you are looking for:

...Some results on fuzzy matrices clayton gilchrist clayartgilchrist gmail com under the supervision of dr simplice tchamna department mathematics georgia college milledgeville ga gcsu edu abstract a matrix is whose entries are real numbers in interval we study prop erties particular attention given to case k idempotent characterize by and n triangular keywords determinant idempotence introduction theory was rst introduced michael g thomason as branch set which developed l zadeh twelve years prior motivation behind s exploration sets fact that physical reality there exist objects cannot be placed clearly dened criteria membership for instance points class all much greater than it would impossible precisely dene such therefore consider this have applications broad spectrum elds proven very useful within medical eld since often uncertainty information about patients symptoms diagnoses assist more accurately representing while also pointing most likely candidate diagnosis meenakshi kaliraja ...

no reviews yet
Please Login to review.