203x Filetype PDF File size 0.29 MB Source: users.physics.ox.ac.uk
LECTURE14: EXAMPLESOFCHANGEOF BASISAND MATRIXTRANSFORMATIONS. QUADRATICFORMS. Prof. N. Harnew University of Oxford MT2012 1 Outline: 14. EXAMPLESOFCHANGEOFBASIS ANDMATRIXTRANSFORMATIONS. QUADRATICFORMS. 14.1 Examples of change of basis 14.1.1 Representation of a 2D vector in a rotated coordinate frame 14.1.2 Rotation of a coordinate system in 2D 14.2 Rotation of a vector in fixed 3D coord. system 14.2.1 Example 1 14.2.2 Example 2 14.3 MATRICESANDQUADRATICFORMS 14.3.1 Example 1: a 2 × 2 quadratic form 14.3.2 Example 2: another 2 × 2 quadratic form 14.3.3 Example 3: a 3 × 3 quadratic form 2 14.1 Examples of change of basis 14.1.1 Representation of a 2D vector in a rotated coordinate frame ◮ Transformation of vector r from Cartesian axes (x,y) into frame (x′,y′), rotated by angle θ 3 x′ = r cosα y′ = r sinα x = r cos(θ +α) y = r sin(θ + α) → x′= xcosα → y′= ysinα cos(θ+α) sin(θ+α) x cosα = x′cosθcosα−x′sinθsinα y sinα = y′ sinθcosα+y′cosθsinα Since x′sinα = y′cosα Since y′cosα =x′sinα x = x′cosθ−y′sinθ y = x′sinθ+y′cosθ ◮ Coordinate transformation: x cosθ −sinθ x′ Theseequations = ′ (1) relate the coordinates y sinθ cosθ y ◮ Take the inverse: ofrmeasuredinthe (x,y)framewith those ′ measuredintherotated x cosθ sinθ x 4 y′ = −sinθ cosθ y (2) (x′,y′) frame
no reviews yet
Please Login to review.