125x Filetype PDF File size 1.34 MB Source: www.cmor-faculty.rice.edu
AN INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS VERSION 1.2 Lawrence C. Evans Department of Mathematics UCBerkeley Chapter 1: Introduction Chapter 2: A crash course in basic probability theory Chapter 3: Brownian motion and “white noise” Chapter 4: Stochastic integrals, Itˆo’s formula Chapter 5: Stochastic differential equations Chapter 6: Applications Appendices Exercises References 1 PREFACE These are an evolvingset of notes for Mathematics 195 at UC Berkeley. This course is for advanced undergraduate math majors and surveys without too many precise details random differential equations and some applications. Stochastic differential equations is usually, and justly, regarded as a graduate level subject. A really careful treatment assumes the students’ familiarity with probability theory, measure theory, ordinary differential equations, and perhaps partial differential equations as well. This is all too much to expect of undergrads. But white noise, Brownian motion and the random calculus are wonderful topics, too good for undergraduates to miss out on. Therefore as an experiment I tried to design these lectures so that strong students could follow most of the theory, at the cost of some omission of detail and precision. I for instance downplayed most measure theoretic issues, but did emphasize the intuitive idea of σ–algebras as “containing information”. Similarly, I “prove” many formulas by confirming themineasycases(forsimplerandomvariablesorforstepfunctions), and then just stating that by approximation these rules hold in general. I also did not reproduce in class some of the more complicated proofs provided in these notes, although I did try to explain the guiding ideas. Mythanks especially to Lisa Goldberg, who several years ago presented the class with several lectures on financial applications, and to Fraydoun Rezakhanlou, who has taught from these notes and added several improvements. I am also grateful to Jonathan Weare for several computer simulations illustrating the text. Thanks also to Robert Piche, who provided me with an extensive list of typos and suggestions that I have incorporated into this latest version of the notes. 2 CHAPTER1: INTRODUCTION A. MOTIVATION Fix a point x ∈ Rn and consider then the ordinary differential equation: 0 ˙ (ODE) x(t)=b(x(t)) (t>0) x(0) = x , 0 where b : Rn → Rn is a given, smooth vector field and the solution is the trajectory x(·):[0,∞) → Rn. Trajectory of the differential equation ˙ d x(t). Notation. x(t)isthestate of the system at time t ≥ 0, x(t):=dt In many applications, however, the experimentally measured trajectories of systems modeled by (ODE) do not in fact behave as predicted: Sample path of the stochastic differential equation Hence it seems reasonable to modify (ODE), somehow to include the possibility of random effects disturbingthe system. A formal way to do so is to write: ˙ (1) X(t)=b(X(t))+B(X(t))ξ(t)(t>0) X(0) = x , 0 where B : Rn → Mn×m (= space of n×m matrices) and ξ(·):=m-dimensional “white noise”. This approach presents us with these mathematical problems: • Define the “white noise” ξ(·) in a rigorous way. 3 • Define what it means for X(·) to solve (1). • Show (1) has a solution, discuss uniqueness, asymptotic behavior, dependence upon x , b, B, etc. 0 B. SOME HEURISTICS Let us first study (1) in the case m = n, x =0,b ≡ 0, and B ≡ I. The solution of 0 (1) in this settingturns out to be the n-dimensional Wiener process,orBrownian motion, denoted W(·). Thus we may symbolically write ˙ W(·)=ξ(·), thereby assertingthat “white noise” is the time derivative of the Wiener process. Now return to the general case of the equation (1), write d instead of the dot: dt dX(t) = b(X(t))+B(X(t))dW(t), dt dt and finally multiply by “dt”: (SDE) dX(t)=b(X(t))dt+B(X(t))dW(t) X(0) = x . 0 This expression, properly interpreted, is a stochastic differential equation. We say that X(·) solves (SDE) provided (2) X(t)=x + tb(X(s))ds+ tB(X(s))dW for all times t>0 . 0 0 0 Now we must: • Construct W(·): See Chapter 3. • Define the stochastic integral t ···dW : See Chapter 4. 0 • Show (2) has a solution, etc.: See Chapter 5. And once all this is accomplished, there will still remain these modeling problems: • Does (SDE) truly model the physical situation? • Is the term ξ(·) in (1) “really” white noise, or is it rather some ensemble of smooth, but highly oscillatory functions? See Chapter 6. Aswewillseelaterthesequestionsaresubtle, and different answers can yield completely different solutions of (SDE). Part of the trouble is the strange form of the chain rule in the stochastic calculus: ˆ C. ITO’S FORMULA Assume n = 1 and X(·) solves the SDE (3) dX =b(X)dt+dW. 4
no reviews yet
Please Login to review.