147x Filetype PDF File size 2.71 MB Source: www.wssd.k12.pa.us
Calculus Mid-Term Review Focus: Chapter 3 Derivatives of a Function Concepts: Differentiability (do left- and right-hand derivatives equal?) 4 (actually 3) ways a function might fail to have a derivative Intermediate Value Theorem for Derivatives Rules for Differentiation (“shortcuts”) Power/Product/Quotient/Chain Rules Second and Higher Order Derivatives Position/Velocity/Acceleration Hierarchy and definition of Speed Derivatives of Trigonometric Functions Implicit Differentiation Derivatives of Exponential and Logarithmic Functions Problems: Find all the values of x for which the function is differentiable. 3x2 −3x+5 1) f (x) = x −4 all reals except x = 4 2) f (x) = x −5 (5, ∞) € 3) f (x) = 3x −5 all reals except x = 5/3 € € Find dy/dx. 2 x−4 6x−3 − 3x2−3x+5 1 4) y = 3x −3x +5 dy = ( )( ) ( )( ) x −4 dx (x−4)2 5) y = 3x2cos 3x2 dy =3x2 −sin(3x2) (6x)+6xcos(3x2) € ( ) dx ( ) 6) y = 3ex2x2 dy =3ex2 (2x)+3ex2 (2x)(x2) € dx 7) y = 3x5 + 2x4 + 8x3 −5x +4 dy =15x4+8x3+24x2−5 € dx 8) y = x2 −4x+1 dy = 1 x2 −4x+1 −1/2(2x−4) € dx 2( ) 3tan(x2) dy 2x(3sec2(x2))(2x)−3tan(x2)(2) € 9) y = 2x dx = 4x2 € 10) y = ln(cos(3x4)) dy = 1 −sin 3x4 12x3 =−12x3tan 3x4 dx cos(3x4)( ( ))( ) ( ) dy 1 3 € 11) y = log 3x3 = (9x2)= 4( ) dx 3x3ln4 xln4 12) y = 2cosx5 dy =2cosx5 ln2(−sinx5)(5x4) € dx 13) Find all of the nonzero derivatives of y = 3x5 + 2x3 + 5x −2 € 4 2 ! y =15x +6x +5 !! 3 y =60x +12x !!! 2 € y =180x +12 y(4) = 360x y(5) = 360 Use implicit differentiation to find dy/dx: 14) x4 − y4 = 3x + 2y 15) xy + 3x −2y =5 4x3−4y3 dy =3+2dy x dy + y+3−2dy =0 € dx dx € dx dx 4x3−3=2dy+4y3dy x dy −2dy =−y−3 dx dx dx dx dy 4x3−3 dy −y−3 dx = 2+4y3 dx = x−2 16) cosx+sin y = x2y3 −sinx+cosy"dy%=x2"3y2 dy%+2xy3 $ ' $ ' #dx& # dx& € cosy"dy%−3x2y2 dy =2xy3+sinx $ ' #dx& dx dy 2xy3+sinx dx = cosy−3x2y2 2 2 Use implicit differentiation to find d y/dx : 17) x2 = 2− 3 18) x2 − x = 3sin y y 3 dy 2x−1=3cosydy 2x=0+ dx y2 dx € dy 2x−1 € dy 2 dx = 3cosy dx = 3 xy2 3cosy 2 − 2x−1 −3siny "dy% d2y 2 ! dy$ 2 d2y ( )( ) ( )( )$ ' = x#2y &+ y2 = #dx& dx2 3 " dx% 3 dx2 9cos2 y = 4 xy!2 xy2$+ 2 y2 " 2x−1% # & 3cosy 2 − 2x−1 −3siny 3 "3 % 3 ( )( ) ( )( )$3cosy' = # & = 8 x2y3 = 2 y2 9cos2 y 9 3 6cosy+ 2x−1 2tany = ( ) 9cos2 y Calculus Mid-Term Review Focus: Chapter 2 Limits and Continuity Concepts: Definition of a Limit Properties of Limits The Sandwich Theorem Horizontal Asymptotes Vertical Asymptotes End Behavior Model Continuity at a point Intermediate Value Theorem for Continuous Functions Tangent and Normal Lines to a curve Problems: x2 − x+1 1−1+1 1 1) lim = = x→1 x+3 1+3 4 x−1 x−1 1 1 2) lim 2 =lim =lim = x→1 x −1 x→1 x−1 x+1 x→1 x+1 2 ( )( ) (2+x)3−8 8+12x+6x2+x3−8 3) lim =lim =lim 12+6x+x2 =12 x→0 x x→0 x x→0 ( ) lim x2 −5 = lim#x+1+ −4 &=∞ 4) x→1 x→1% ( x−1 $ x−1' x2 +3x−4 x−1 x+4 5) lim lim( )( ) = lim(x+4)=5 x→1 x−1 x→1 x−1 x→1 lim3sin2 x−4sinxlimsinx(3sinx−4) =lim 3sinx−4 =−4 6) x→0 sinx x→0 sinx x→0 ( ) 7) Use the diagram to the right to answer the following: A) lim f (x) = 1 x→2− B) lim f (x) = -2 € x→2+ C) lim f (x) = DNE € x→2 € D) f (2) = -2
no reviews yet
Please Login to review.