jagomart
digital resources
picture1_Derivatives Calculus Pdf 172562 | Review Packet Solutions2


 147x       Filetype PDF       File size 2.71 MB       Source: www.wssd.k12.pa.us


File: Derivatives Calculus Pdf 172562 | Review Packet Solutions2
calculus mid term review focus chapter 3 derivatives of a function concepts differentiability do left and right hand derivatives equal 4 actually 3 ways a function might fail to have ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
         Calculus Mid-Term Review          Focus: Chapter 3 Derivatives of a Function 
          
         Concepts:  Differentiability (do left- and right-hand derivatives equal?) 
                     4 (actually 3) ways a function might fail to have a derivative 
                     Intermediate Value Theorem for Derivatives 
                     Rules for Differentiation (“shortcuts”) 
                     Power/Product/Quotient/Chain Rules 
                     Second and Higher Order Derivatives 
                     Position/Velocity/Acceleration Hierarchy and definition of Speed 
                     Derivatives of Trigonometric Functions 
                     Implicit Differentiation 
                     Derivatives of Exponential and Logarithmic Functions 
                      
         Problems: 
         Find all the values of x for which the function is differentiable. 
                     3x2 −3x+5
         1)  f (x) =     x −4       all reals except x = 4                                  
                
         2)  f (x) =  x −5    (5, ∞)               
                
 €       3)  f (x) = 3x −5    all reals except x = 5/3 
                
 €        
 €        
         Find dy/dx. 
                   2                                  x−4 6x−3 − 3x2−3x+5 1
         4)  y = 3x −3x +5                      dy = (     )(       )  (             )( )  
                     x −4                      dx                  (x−4)2
          
         5)  y = 3x2cos 3x2                     dy =3x2 −sin(3x2) (6x)+6xcos(3x2) 
 €                      (    )                 dx        (           )
          
         6)  y = 3ex2x2                         dy =3ex2 (2x)+3ex2 (2x)(x2) 
 €                                             dx
          
         7)  y = 3x5 + 2x4 + 8x3 −5x +4         dy =15x4+8x3+24x2−5 
 €                                             dx
          
         8)  y =  x2 −4x+1                      dy = 1 x2 −4x+1 −1/2(2x−4) 
 €                                             dx    2(            )
          
                 3tan(x2)                       dy   2x(3sec2(x2))(2x)−3tan(x2)(2)
 €       9)  y =    2x                         dx =                  4x2                    
                
          
          
 €        
       10)  y = ln(cos(3x4))            dy =    1     −sin 3x4   12x3 =−12x3tan 3x4  
                                        dx   cos(3x4)(     (   ))(    )           (   )
                                        dy      1            3
  €    11)  y = log 3x3                    =        (9x2)=        
                  4(   )                dx   3x3ln4         xln4
        
       12)  y = 2cosx5                  dy =2cosx5 ln2(−sinx5)(5x4) 
  €                                     dx
        
       13) Find all of the nonzero derivatives of  y = 3x5 + 2x3 + 5x −2 
  €            4    2                             
         !
        y =15x +6x +5
         !!     3
        y =60x +12x
         !!!     2                   € 
        y =180x +12       
        y(4) = 360x
        y(5) = 360
        
       Use implicit differentiation to find dy/dx: 
       14)  x4 − y4 = 3x + 2y                      15)  xy + 3x −2y =5 
                                                           
        4x3−4y3 dy =3+2dy                               x dy + y+3−2dy =0
  €              dx       dx                 €           dx          dx
        4x3−3=2dy+4y3dy                                 x dy −2dy =−y−3  
                  dx      dx                             dx    dx
        dy   4x3−3                                      dy  −y−3
        dx = 2+4y3                                      dx = x−2
        
        
       16) cosx+sin y = x2y3 
               
        −sinx+cosy"dy%=x2"3y2 dy%+2xy3
                    $   '    $      '
                    #dx&     #    dx&
  €     cosy"dy%−3x2y2 dy =2xy3+sinx        
            $   '
            #dx&         dx
        dy   2xy3+sinx
        dx = cosy−3x2y2
        
        
                                    2   2
       Use implicit differentiation to find d y/dx : 
       17)  x2 = 2− 3                18)  x2 − x = 3sin y 
                 y                          
               3 dy                      2x−1=3cosydy
        2x=0+                                        dx
               y2 dx            €          dy   2x−1
  €     dy  2                              dx = 3cosy
        dx = 3 xy2
                                                3cosy 2 − 2x−1 −3siny "dy%
       d2y  2 !   dy$ 2                   d2y  (     )( ) (    )(      )$  '
          = x#2y    &+ y2                     =                         #dx&    
       dx2  3 "   dx% 3                   dx2              9cos2 y
          = 4 xy!2 xy2$+ 2 y2                                           " 2x−1%
                #    &                          3cosy 2 − 2x−1 −3siny
            3   "3   % 3                       (     )( ) (    )(      )$3cosy'
                                              =                         #     &
          = 8 x2y3 = 2 y2                                   9cos2 y
            9      3                            6cosy+ 2x−1 2tany
                                              =       (     )
                                                     9cos2 y
       Calculus Mid-Term Review          Focus: Chapter 2 Limits and Continuity 
        
       Concepts:  Definition of a Limit 
                  Properties of Limits 
                  The Sandwich Theorem 
                  Horizontal Asymptotes 
                  Vertical Asymptotes 
                  End Behavior Model 
                  Continuity at a point 
                  Intermediate Value Theorem for Continuous Functions 
                  Tangent and Normal Lines to a curve 
                   
       Problems: 
              x2 − x+1  1−1+1 1
       1) lim          =       =                          
           x→1  x+3       1+3    4
              x−1            x−1           1    1
       2) lim 2    =lim              =lim      =          
           x→1 x −1   x→1 x−1 x+1      x→1 x+1  2
                         (    )(   )
        
              (2+x)3−8        8+12x+6x2+x3−8
       3) lim           =lim                     =lim 12+6x+x2 =12            
           x→0    x       x→0         x            x→0 (          )
        
          lim x2 −5 = lim#x+1+ −4 &=∞
       4)  x→1        x→1%          (                     
               x−1       $      x−1'
        
        
              x2 +3x−4      x−1 x+4
       5) lim           lim(    )(    ) = lim(x+4)=5   
           x→1   x−1    x→1    x−1        x→1
        
          lim3sin2 x−4sinxlimsinx(3sinx−4) =lim 3sinx−4 =−4
       6)  x→0     sinx     x→0      sinx        x→0 (       )      
        
        
       7) Use the diagram to the right to answer the following: 
        
       A)  lim f (x) = 1 
           x→2−
              
        
       B)  lim f (x) = -2 
 €         x→2+
              
        
       C) lim f (x) = DNE 
 €         x→2
              
        
 €     D) f (2) = -2 
        
The words contained in this file might help you see if this file matches what you are looking for:

...Calculus mid term review focus chapter derivatives of a function concepts differentiability do left and right hand equal actually ways might fail to have derivative intermediate value theorem for rules differentiation shortcuts power product quotient chain second higher order position velocity acceleration hierarchy definition speed trigonometric functions implicit exponential logarithmic problems find all the values x which is differentiable f reals except dy dx y xcos sin exx ex tan sec ln cos xtan log xln cosx sinx nonzero use xy ydy cosy d cosydy siny tany limits continuity limit properties sandwich horizontal asymptotes vertical end behavior model at point continuous tangent normal lines curve lim limsin sinxlimsinx diagram answer following b c dne...

no reviews yet
Please Login to review.