139x Filetype PDF File size 0.51 MB Source: www.mathcity.org
Notes of Chapter 02: Calculus with Analytic Geometry by Ilmi Kitab Khana, Lahore. x i f 30 I 1 Lu: ‘j:-§(1)h-I. fw-¢1I:-~, M.11‘); 1 o. 'v> cu ,' 43 = fhidx "1" ‘Jr A5 = 7-$I~\xCwAA'L hlw J3 481:- Lii P(“l>‘)) §- G(‘l+§J.,f}-+93) -Ll. Qmaj but NA '3:,S.(1)_ 11... 5,.‘ 3 ‘M PK T‘! ~a=§m $3 _$:\-V‘23+$Q ) 1 I o ‘>5 1 Pm» A3} N“ 5(1) '= t>~\\¥ ss. Mn "3 = 5.2.. WK ‘ : __‘\’7 s.;@>=%=;<£. T’ 0- ~.,‘ ., ~~>>~ =')A§:.k§ AIS. Q3 S. S3 #43. - i_le.\o1'»'»l.§ou0.p¢&1)U¢,.)\:‘_ 5% P -U, Th. ‘\)J0-IJ»5'\'~1~|. -~w.wuA¢AP'v>m w»>.\~\Pw.w1d-f.'~¢ Puu.h1o.eAJ»aL~,.P= 9_?_x\on/_ __.____Y.._. ¢;_\,,j3}_;\_,h,- Uka. Jab. J; Ml ~§- °~ V¢’**l-Vb- "~’*-“\ M>\¢¢+.t.;... u,¢.ua».J.ox»\~h- Exercise 2.3: Page 1 of 17 - Avaiilable at www.mathcity.org Notes of Chapter 02: Calculus with Analytic Geometry by Ilmi Kitab Khana, Lahore. ._e\w:=n:uu~w...w,~--»>»=~ - - ~ -\.Pv'!&¢»'_-'— ---»».), -.. ., ~ ‘~>"4\I\r V mm--v.. -V...‘ - .- , ' . .1=m_.. ..=—...-\. EXERCISE2.3 . /' Find‘Ay, dy, A)’ "dy if l 1.0) y =x“-1, x=1"~.% ~==-0-5 (u) Y = ===2. Ax=0-3' 301. ~ y = I3’ 1) Here L(-0-5) <55 = 3(\) . A‘) = §(a+n)—S(-1) ,[(1+n)3-1] -[Q-J = 30“) : (ii-Q-51),-4 -1‘+\ 2 ‘J8 3 Now (‘+b‘) "3 = (\-<>.s)1-(U3 A\5""‘J * '°‘“5 ’("‘"'§) (°.s)3_‘ 2 -O"-‘K 6-1 '.: 011$ __. Kw» 1'. 15-I bu : -O-$75 -._ g 1;.-_-_~ ». ~_ . $3 : 317TA'\l i .. :: -3 (ii) y = ~11-3x-2 7 ‘-7-)5)‘ O S&‘_ Q.‘ .-~*s-F5-1 A3 1 §(1+M.3-§-(M ‘I’ PM G) ‘,5 , _~,/__.=,.,.-1* 1571 ~ = -“"I'** \ 1 $31.1. = ';(-its)-1 "Si" Q = _.'>_.__.<<»-3» 1 -Z -= _--—-""" A3 .. O-'l\3§ Ag : O-Ilse MUM? z>~;_A~, = @-'z.\s§» 0-119° g ~"""' 9w-5 Exercise 2.3: Page 2 of 17 - Avaiilable at www.mathcity.org 0‘ '."’.=- -Q". T\ "'0 LUO: Notes of Chapter 02: Calculus with Analytic Geometry by Ilmi Kitab Khana, Lahore. 32. 2. Use di“f'erentials to -approxiamte (i) V262 4' Sol. We consider y = rm = ~/I __~.......--__~.__~~__<1; with x = 25 and Ax = 1.2 From (1), we have - d = 1 “-* dx _y 2~E ‘ - ' _____ A (2, * - Substituting x = 25, (1.; = Ax = 1.2 in (2), we get A) -1 _.L—-.(\.7.) 25? _g ., O-\'L .3.-(\-1) 1‘!-5 : ‘O-VI.-\~§ _ \-2. —-":‘ = 0-\‘L "‘°‘~‘ A3 ch A5 = f(1+z>1)-§(>\,) A3 = -5- V on = $33 -XI; 0.\7_ -= ‘ll.-7. -5 (ii) V80.9 301- Let J’ = /'(r) = \/E Now A51: A~3=§(1+m)-§l_~1) H-u1‘A=Q\ and Ax: -—O.1=zlx A3 LA‘ A =§H - 5 1+A1 F' 2;? -0-005$! = JQ\..¢.\ - ET I- —-——_ (L-o.\) zri-‘ —o-ooS§§ =‘Qh-Q -q .. -0-‘ = 2*‘ S30-W _-Q : -0-4>0§§$' -6-\ W £30-'\ =, -0-0\'§S§+q Exercise 2.3: Page 3 of 17 - Avaiilable at www.mathcity.org s ~55]; Notes of Chapter 02: Calculus with Analytic Geometry by Ilmi Kitab Khana, Lahore. 3 i s § i | '5; I‘ W 1» 1 '5‘ ‘Q; at -;\.<-'_»~ ~ 1 . =~. ~ . . - r.v.l.\'\4.‘§-; . _ . a H.-5-,.» ._,...t M. »-. *1 (iii) “*1 123 Sol. ‘I; ‘*3 = - %; ‘I -0-O1‘-L WM 15; 9 (V2.3) ‘ Lu 5=§(-n = {'3 -~~ A;-'.- A3: §(1-vmn-*§(~n ‘b"'z' \' ‘I l-u;.\\ ~.\-¢\1-S J3 = ('a+m\)‘- x3 \ \ ‘I ‘I3 9'3"" A3 -: ‘$1.3- A‘ -o-oz“ -_-_ (I152-Z)’-(\1$) 1 Q '1 ‘I .. .1.§"‘h = (my- (Q) ’ -¢..n.u,= I], (n3) - $ \ ("7- | ‘ ‘: ---—-1' 3 "_ =- . ct MM), ‘ (na) S ¢>°1 -'1 V3 = -o-o'1(.(+§ -1 “"’ g 3(5)‘ (iv) cos 61' Jji bf) 1: $(‘\+A\)-_¥'(\\) Ixtu = cos; Nan - A‘) 14'-'o.'>((5+\. -C09‘. “ma a.L2=¢-~».L=.!‘_- , ) O Ho 3 _'§_-L : QM -'-L Q :- 1~ ‘K '= L ‘ 3‘. 1 Q» A1 2 \ xu us» (1-1 1 (1-\ 3 NM A3 ., _$~‘~.a‘ =-%A(r1;\.-1%“ -o~\Sn. - QM“-¢-§ ‘K G,Q\._t>~S -; -O-\§\L .;,=- \B0 q (Z,,g\' = -O-\S\1+o~$ = o-‘\3‘1$ l 1%,.---1 Exercise 2.3: Page 4 of 17 - Avaiilable at www.mathcity.org II W ;;\' 0| 9- ul- J3‘
no reviews yet
Please Login to review.