147x Filetype PDF File size 3.17 MB Source: www.ebnet.org
CHAPTER 2 Differentiation Section 2.1 The Derivative and the Tangent Line Problem . . . . . 95 Section 2.2 Basic Differentiation Rules and Rates of Change . . 109 Section 2.3 Product and Quotient Rules and Higher-Order Derivatives . . . . . . . . . . . . . . . 120 Section 2.4 The Chain Rule . . . . . . . . . . . . . . . . . . . . 134 Section 2.5 Implicit Differentiation . . . . . . . . . . . . . . . . 147 Section 2.6 Related Rates . . . . . . . . . . . . . . . . . . . . . 161 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 CHAPTER 2 Differentiation Section 2.1 The Derivative and the Tangent Line Problem 1. (a) At slopex , y , 0. 2. (a) At slopex , y , 2. 1 1 1 1 3 At slopex , y , 5. At slopex , y , 2. 2 2 2 2 2 5 (b) At slopex , y , 5. (b) At slopex , y , 4. 1 1 2 1 1 3 At slopex , y , 2. At slopex , y , 5. 2 2 2 2 4 3. (a), (b) 4. (a) f 4 f1 5 2 1 y f ) 4) f 1)) )x 1) f 1) ) x 1 4 1 3 4 1 y f 4 f3 5 4.75 6 4 3 1 0.25 5 f ) 45) 4 4) ,)5 Thus, f4 f1 > f4 f3. f ) 4) f 13) ) 4 1 4 3 3 2 f ) 1) 2 1) , 2) (b) The slope of the tangent line at 1, 2 equals f1. 1 This slope is steeper than the slope of the line through x 1 2 3 4 5 6 and Thus, 1, 2 4, 5. (c) y f4 f1 x 1 f1) f 4 f1 < f1. 4 1 4 1 3x 1 2 3 1x 1 2 x 1 5. fx 3 2x is a line. Slope 2 6. gx 3x 1 is a line. Slope 3 2 2 7. Slope at 1, 3 lim g1 x g1 8. Slope at 2, 1 lim g2 x g2 x→0 x x→0 x 2 2 lim 1 x 4 3 lim 5 2 x 1 x→0 x x→0 x 2 2 lim 1 2x x 1 lim 5 4 4x x 1 x→0 x x→0 x lim 2 x 2 lim 4 x 4 x→0 x→0 9. Slope at 0, 0 lim f0 t f0 10. Slope at 2, 7 lim h2 t h2 t→0 t t→0 t 2 2 lim 3t t 0 lim 2 t 3 7 t→0 t t→0 t 2 lim 3 t 3 4 4t t 4 t→0 lim t→0 t lim 4 t 4 t→0 95 96 Chapter 2 Differentiation 11. f x 3 12. gx 5 13. fx 5x fx lim fx x fx gx lim gx x gx fx lim fx x fx x→0 x x→0 x x→0 x lim 3 3 lim 5 5 lim 5x x 5x x→0 x x→0 x x→0 x lim 0 0 0 lim 5 5 x→0 lim 0 x→0 x→0 x 14. fx 3x 2 15. hs 3 2s 3 fx lim fx x fx hs s hs x→0 x hs lim s→0 s lim 3x x 2 3x 2 3 2s s 3 2s x→0 x lim 3 3 s→0 s 3x 2 s 2 lim lim 3 x→0 x s→0 s 3 lim 3 3 x→0 16. fx 9 1x 2 fx lim fx x fx x→0 x lim 9 12x x 9 12x x→0 x 1 1 lim x→0 2 2 17. fx 2x2 x 1 fx lim fx x fx x→0 x 2 2 lim 2x x x x 1 2x x 1 x→0 x 2 2 2 lim 2x 4x x 2x x x 1 2x x 1 x→0 x 2 lim 4x x 2x x lim 4x 2 x 1 4x 1 x→0 x x→0 18. fx 1 x2 fx lim fx x fx x→0 x 2 2 lim 1 x x 1 x x→0 x 2 2 2 lim 1 x 2x x x 1 x x→0 x 2 lim 2x x x lim 2x x 2x x→0 x x→0 Section 2.1 The Derivative and the Tangent Line Problem 97 19. fx x3 12x fx lim fx x fx x→0 x 3 3 lim x x 12x x x 12x x→0 x 3 2 2 3 3 lim x 3x x 3xx x 12x 12 x x 12x x→0 x 2 2 3 lim 3x x 3xx x 12 x x→0 x 2 2 2 lim 3x 3x x x 12 3x 12 x→0 20. fx x3 x2 fx lim fx x fx x→0 x 3 2 3 2 lim x x x x x x x→0 x 3 2 2 3 2 2 3 2 lim x 3x x 3xx x x 2x x x x x x→0 x 2 2 3 2 lim 3x x 3xx x 2x x x x→0 x 2 2 2 lim 3x 3x x x 2x x 3x 2x x→0 21. fx 1 22. fx 1 x 1 2 x f x x fx fx lim fx x fx fx lim x→0 x x→0 x 1 1 1 1 2 2 x x1x1 lim x x x lim x→0 x x→0 x 2 2 lim x x x x 1 x x 1 x→0 2 2 lim xx x x x→0 xx x 1x 1 2 lim 2x x x x x→0 2 2 lim xx x x x→0 xx x 1x 1 2xx lim 2 2 lim 1 x→0 x x x x→0 x x 1x 1 2x 1 x4 2 x 1 2 3 x 23. fx x 1 fx lim fx x fx x→0 x lim x x1 x1 xx1 x1 x→0 x x x1 x1 lim x x 1 x 1 x→0 x x x1 x1 lim 1 1 1 x→0 x x1 x1 x 1 x 1 2 x1
no reviews yet
Please Login to review.