jagomart
digital resources
picture1_Precalculus With Limits Pdf 170990 | Ch12 Item Download 2023-01-26 16-19-12


 155x       Filetype PDF       File size 2.97 MB       Source: college.cengage.com


File: Precalculus With Limits Pdf 170990 | Ch12 Item Download 2023-01-26 16-19-12
332522cb 1200 an qxd 4 26 06 6 23 pm page 1 precalculus with limits answers to section 12 1 1 chapter 12 d 5 section 12 1 page 860 ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
          332522CB_1200_AN.qxd  4/26/06  6:23 PM  Page 1
                         Precalculus with Limits, Answers to Section 12.1                                                                                           1
                         Chapter 12                                                                    (d)   5
                         Section 12.1         (page 860)
                             Vocabulary Check           (page 860)                                          0                    5
                                                                                                             0
                             1. limit      2. oscillates     3. direct substitution                 3.
                          1. (a)                                                                    x        1.9    1.99     1.999     2     2.001      2.01     2.1
                                                         x                                           fx   13.5 13.95     13.995     14    14.005    14.05     14.5
                                                                                                       14; Yes
                                                     2(12 Š x)                                      4.   x       1.9          1.99        1.999      2
                                      2(12 Š x)                                                          fx 1.090        1.010     1.001      1
                              (b)  V  lwh
                                      212  x  212  x  x                                         x         2.001      2.01        2.1
                                                   2
                                      4x12  x                                                         fx   0.999 0.990          0.890
                              (c)
                                    x    3      3.5        3.9        4                                    ; Yes
                                                                                                       1
                                    V    972    1011.5     1023.5     1024                          5.   x       2.9        2.99      2.999      3
                                    x    4.1        4.5       5                                          f x   0.1695     0.1669    0.1667     Error
                                    V    1023.5     1012.5    980                                        x       3.001      3.01      3.1
                                  lim V  1024                                                           f x   0.1666     0.1664    0.1639
                                  x→4
                              (d) 1200
                                                                                                       1; No
                                                                                                       6
                                                                                                    6.   x       1.1         1.01        1.001       1
                                  0                     12                                               f x   0.3226      0.3322      0.3332      Error
                                    0
                          2. (a)                                                                         x       0.999       0.99        0.9
                                  y              18                                                      f x   0.3334      0.3344      0.3448
                                               x                                                       1; No
                                                                                                          3
                              (b)  A  1bh                                                          7.   x       0.9        0.99      0.999      1
                     All rights reserved.2
                     .                1xy
                                       2                                                                  f x  0.2564     0.2506    0.2501     Error
                                       1           2
                                      2x   18  x
                              (c)   x    2          2.5       2.9        3                               x       1.001      1.01      1.1
                     flin Company
                                    A    3.7417     4.2848    4.4903     4.5                              f x  0.2499     0.2494    0.2439
                                                                                                       1;              3
                                    x    3.1        3.5       4                                        4
                     Houghton Mif
                                    A    4.4897     4.1964    2.8284                                      −5                     4
                                  lim A  4.5
                     Copyright ©  x→3                                                                                 −3
          332522CB_1200_AN.qxd  4/26/06  6:23 PM  Page 2
                     Precalculus with Limits, Answers to Section 12.1                                                                                             2
                     (Continued)                                                                12.    x         1.9           1.99         1.999      2
                     8.    x       2.1       2.01     2.001      2                                 f x   0.0641      0.0627       0.0625      Error
                           f x   1.1111     1.0101       1.001    Error                              x          2.001        2.01         2.1
                           x       1.999      1.99      1.9                                         f x   0.0625      0.0623       0.061
                           f x     0.999     0.9901     0.9091                                    1;               2
                         1;                  3                                                         16
                                                                                                          −3                     3
                            −7                     2
                                                                                                                     −2
                                             −3                                                 13.
                      9.    x       0.1      0.01      0.001      0                                 x       0.1       0.01       0.001          0
                            f x   0.2247    0.2237     0.2236      Error                             f x   0.9983     0.99998     0.9999998       Error
                            x       0.001     0.01       0.1                                           x       0.001           0.01        0.1
                            f x   0.2236    0.2235     0.2225                                        f x   0.9999998       0.99998     0.9983
                         0.2236;              0.8                                                   1;             2
                                  −3                     3                                             −3                     3
                                             −0.8                                                                 −2
                     10.    x       3.1         3.01        3.001      3                    14.    x       0.1       0.01     0.001      0
                            f x   0.2485      0.2498      0.25       Error                        f x   0.050      0.005     0.0005      Error
                            x       2.999      2.99        2.9                                      x         0.001        0.01        0.1
                            f x   0.25       0.2502      0.2516                                   f x  0.0005       0.005      0.05
                         1;                  2                                                     0;             2
                            4
                              −4                     2                                                 −3                     3
                                             −2                                                                   −2
                 All rights reserved.
                 .   11.                                                                        15.      y                        16.       y
                            x       4.1       4.01     4.001      4
                                                                                                        8                                  3
                            f x   0.4762     0.4975    0.4998      Error                                                                 2
                                                                                                        6
                 flin Company                                                                           4                                                        x
                            x       3.999      3.99     3.9                                                                       Š2Š1      123456
                                                                                                                                          Š1
                            f x   0.5003      0.5025    0.5263                                        2                                 Š2
                                                                                                                               x          Š3
                         1                                                                          −2 2468                               Š4
                 Houghton Mif2;             3                                                          −2                                 Š5
                            −6                      3                                               5                              Limit does not exist.
                 Copyright ©                                                                    17. 13      18. 12       19. Does not exist. Answers will vary.
                                           −3                                                   20. Does not exist. Answers will vary.
           332522CB_1200_AN.qxd  4/26/06  6:23 PM  Page 3
                          Precalculus with Limits, Answers to Section 12.1                                                                                                  3
                          (Continued)                                                                   59. (a) and (b) Answers will vary.
                          21. Does not exist. Answers will vary.           22. 1                       60. Answers will vary.
                          23.               3                  24.               3                      61. (a) No. The function may approach different values from
                                                                                                                 the right and left of 2. For example,
                                                                                                                           0,     x < 2
                               −3                      3            −3                      3                     f x   4,     x  2
                                                                                                                          
                                           −1                                   −1                                         6,     x > 2
                                                                                                                 implies but 
                               No. Answers will vary.                  Yes                                                 f 2  4,     lim  fx  4.
                                                                                                                                          x→2
                          25.               2                  26.               2                           (b) No. The function may approach 4 as x approaches 2,
                                                                                                                 but the function could be undefined at x  2. For 
                               −3                      3            −3                      3                    example, in the function fx  4 sinx  2, the limit
                                                                                                                                                         x  2
                                                                                                                 is 4 as x approaches 2, but f2 is not defined.
                                           −2                                   −2
                                                                                                                              x-
                               No. Answers will vary.                  Yes                              62. As a function’s     value approaches 5 from both the right and
                                                                                                             left sides, its corresponding output values approach 12.
                          27.       3                          28.           3
                                                                                                        63. (a)         9
                               −1                      8            −3                      6
                                                                                                                 −3                      12
                                   −3                                       −3                                         −1
                               No. Answers will vary.                  No. Answers will vary.                    6
                          29.       3                          30.           6                               (b) Domain: all real numbers x such that x ≥ 0
                                                                                                             (c) Domain: all real numbers x such that x ≥ 0 except
                               −1                      8            −6                      12                   x  9
                                                                                                             (d) It may not be clear from a graph that a function is not
                                   −3                                       −6                                   defined at a single point. Examining a function graph-
                               Yes will vary.                          No. Answers                               ically and algebraically ensures that you will find all
                                                                                                                 points at which the function is not defined.
                          31.               4                  32.           4                          64. (a)               4
                               −6                      6            −4                      8                    −6                      6
                                           −4                               −4                                               −4
                               Yes                                     Yes                                       1
                          33. (a)            (b) 9         (c) 1       (d)                                      6
                       All rights reserved.12                 2               3                             (b) Domain: all real numbers x except x 3
                       . 
                                                                            
                          34. (a) 9          (b) 60       (c) 1      (d)     5                             (c) Domain: all real numbers x except x  ±3
                                                                  2          5                               (d) It may not be clear from a graph that a function is not
                          35. (a) 8          (b) 3         (c) 3        (d) 61                                  defined at a single point. Examining a function graph-
                       flin Company               8                            8
                          36. (a) 2          (b) 0         (c) 0       (d) 2         37. 15                    ically and algebraically ensures that you will find all
                          38. 6        39. 7      40. 9        41. 3                 42. 2                     points at which the function is not defined.
                          43.     9   44. 1       45. 7        46. 10                 47. 1             65. 1,  x  5                      66. x  9,  x  9
                               10         9           13           3                                          3
                       Houghton Mif48. 2     49. 3550. 3       51. e3  20.09         52. 1                  5x  4         1                    x  6
                                            3          4                                                67.          ,  x                  68.        ,  x  6
                                                                                                           5x  2         3                    x  1
                          53. 0        54. 0      55. 6        56. 3                  57. True          69. x2  3x  9,  x 3             70. x2  2x  4,  x  2
                       Copyright ©58. True, provided the individual limits exist.                                x  2                               x  2
              332522CB_1200_AN.qxd  4/26/06  6:23 PM  Page 4
                            Precalculus with Limits, Answers to Section 12.1                                                                                                                                                4
                            (Continued)                                                                                           73. (a)                                         74. (a)
                                                                                                                                                               z                              (0, −4, 0)
                            71. (a)                                         72. (a)                                                                                                                      z    −4
                                                    z                                           z                                                            4                              −4            −2
                                                                                                                                                                     −4                          −2
                                                                                                                                          (3, −3, 0)         2 −2                                 2
                                                   8                                          8                                                        −2                                     4       −2    2
                                                                                                                                                         2                                                      4
                                         (3, 2, 8)                                            6                                                     4             2                      x                               y
                                                                                      (1, 0, 3)                                                             −2        4                               −4
                                         (3, 2, 7)                               (5, 2, 6)    4                                                x                               y                      −6
                                                                                                      −4                                                    −4
                                        −4                −4                        −4                                                                                                                −8
                                                      −2                                         −2                                                         −6
                                             −2                                                                                                                (0, 5, −5)                (2, 0, −9)
                                              2
                                          4                                          4
                                     6                      4                                          4
                                  x                                 y           x                               y                       (b)                                             (b) 
                                                                                                                                              7 2                                                  101
                                                              15                                                    9                   (c) 3, 1, 5                                   (c) 1, 2, 9
                                  (b) 1         (c)                                (b)               (c)                                      2         2                                                    2
                                                     3, 2,  2                             29             3, 1, 2
                       All rights reserved.
                       . 
                       flin Company
                       Houghton Mif
                       Copyright ©
The words contained in this file might help you see if this file matches what you are looking for:

...Cb an qxd pm page precalculus with limits answers to section chapter d vocabulary check limit oscillates direct substitution a x f yes b v lwh c error lim no y bh all rights reserved xy flin company houghton mif copyright continued...

no reviews yet
Please Login to review.