184x Filetype PDF File size 0.32 MB Source: www.mib.uni-stuttgart.de
Universit¨at Stuttgart Institut fu¨r Mechanik Prof. Dr.-Ing. W. Ehlers www.mechbau.uni-stuttgart.de Vector and Tensor Calculus An Introduction e3 ∗ ∗ e3 e2 α 22 α e 21 2 α ∗ e1 11 e 1 Last Change: 10 April 2018 Chair of Continuum Mechanics, Pfaffenwaldring 7, D-70569 Stuttgart, Tel.: (0711) 685-66346 Contents 1 Mathematical Prerequisites 1 1.1 Basics of vector calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Fundamentals of tensor calculus 9 2.1 Introduction of the tensor concept . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Basic rules of tensor algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Specific tensors and operations . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Change of the basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Higher order tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Fundamental tensor of 3rd order (Ricci permutation tensor) . . . . . . . . 28 2.7 The axial vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.8 The outer tensor product of tensors . . . . . . . . . . . . . . . . . . . . . . 33 2.9 The eigenvalue problem and the invariants of tensors . . . . . . . . . . . . 34 3 Fundamentals of vector and tensor analysis 36 3.1 Introduction of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Functions of scalar variables . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Functions of vector and tensor variables . . . . . . . . . . . . . . . . . . . . 37 3.4 Integral theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Transformations between actual and reference configurations . . . . . . . . 46
no reviews yet
Please Login to review.