jagomart
digital resources
picture1_Calculus Pdf 169561 | Lebovits Slides


 157x       Filetype PDF       File size 0.92 MB       Source: perso.math.u-pem.fr


File: Calculus Pdf 169561 | Lebovits Slides
fractional and multifractional brownian motions stochastic integral w r t mbm white noise theory stochastic calculus w r t multifractional brownian motion seminaire cristolien d analyse multifractale creteil le 21 ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
          Fractional and Multifractional Brownian Motions
       Stochastic integral w.r.t. mBm White Noise Theory
            Stochastic Calculus w.r.t. Multifractional Brownian
                                                     Motion
                   Séminaire Cristolien d’Analyse Multifractale
                                           Créteil, le 21 novembre 2013.
                                                                                                             1/47
            Joachim Lebovits, Université de Paris 13 Nord     Stochastic Calculus w.r.t. mBm
          Fractional and Multifractional Brownian Motions
       Stochastic integral w.r.t. mBm White Noise Theory
     Outline of the presentation
          1   Fractional and Multifractional Brownian Motions
                  Fractional and multifractional Brownian motions
                  The mBm as limit of lumped fBm
                  Non semi-martingales versus integration
          2   Stochastic integral w.r.t. mBm in the White Noise Theory sense
                  Background on White Noise Theory
                  Stochastic Integral with respect to mBm of functional
                  parameter h
                  Miscellaneous formulas
                                                                                                             2/47
            Joachim Lebovits, Université de Paris 13 Nord     Stochastic Calculus w.r.t. mBm
                                                               Fractional and multifractional Brownian motions
          Fractional and Multifractional Brownian Motions      The Multifractional Brownian Motion (mBm)
       Stochastic integral w.r.t. mBm White Noise Theory       The mBm as limit of lumped fBm
                                                               Non semi-martingales versus integration
     Outline of the presentation
          1   Fractional and Multifractional Brownian Motions
                  Fractional and multifractional Brownian motions
                  The mBm as limit of lumped fBm
                  Non semi-martingales versus integration
          2   Stochastic integral w.r.t. mBm in the White Noise Theory sense
                  Background on White Noise Theory
                  Stochastic Integral with respect to mBm of functional
                  parameter h
                  Miscellaneous formulas
                                                                                                               3/47
            Joachim Lebovits, Université de Paris 13 Nord      Stochastic Calculus w.r.t. mBm
                                                               Fractional and multifractional Brownian motions
          Fractional and Multifractional Brownian Motions      The Multifractional Brownian Motion (mBm)
       Stochastic integral w.r.t. mBm White Noise Theory       The mBm as limit of lumped fBm
                                                               Non semi-martingales versus integration
     AgaussianprocessmoreflexiblethanstandardBrownian
     motion (A. Kolmogorov, 1949)
          Definition
          Let H 2 (0,1) be a real constant. A process BH := (BH;t 2 R+) is an fBm if it is
                                                                          t
          centred, Gaussian, with covariance function given by:
                                    E[BHBH]=1/2(t2H +s2H |t s|2H)..
                                        t   s
          Properties
          The process BH verifies
                 BH =0,a.s.
                   0
                                        H       H                                  2H
                 For all t > s > 0,B Bs follows the law N(0,(t s)                   ).
                                        t
                 The trajectoiries de BH are contiuous.
                                                                                                               4/47
            Joachim Lebovits, Université de Paris 13 Nord      Stochastic Calculus w.r.t. mBm
The words contained in this file might help you see if this file matches what you are looking for:

...Fractional and multifractional brownian motions stochastic integral w r t mbm white noise theory calculus motion seminaire cristolien d analyse multifractale creteil le novembre joachim lebovits universite de paris nord outline of the presentation as limit lumped fbm non semi martingales versus integration in sense background on with respect to functional parameter h miscellaneous formulas agaussianprocessmoreexiblethanstandardbrownian a kolmogorov denition let be real constant process bh is an if it centred gaussian covariance function given by e th sh s properties veries for all b bs follows law n trajectoiries are contiuous...

no reviews yet
Please Login to review.