157x Filetype PDF File size 0.92 MB Source: perso.math.u-pem.fr
Fractional and Multifractional Brownian Motions Stochastic integral w.r.t. mBm White Noise Theory Stochastic Calculus w.r.t. Multifractional Brownian Motion Séminaire Cristolien d’Analyse Multifractale Créteil, le 21 novembre 2013. 1/47 Joachim Lebovits, Université de Paris 13 Nord Stochastic Calculus w.r.t. mBm Fractional and Multifractional Brownian Motions Stochastic integral w.r.t. mBm White Noise Theory Outline of the presentation 1 Fractional and Multifractional Brownian Motions Fractional and multifractional Brownian motions The mBm as limit of lumped fBm Non semi-martingales versus integration 2 Stochastic integral w.r.t. mBm in the White Noise Theory sense Background on White Noise Theory Stochastic Integral with respect to mBm of functional parameter h Miscellaneous formulas 2/47 Joachim Lebovits, Université de Paris 13 Nord Stochastic Calculus w.r.t. mBm Fractional and multifractional Brownian motions Fractional and Multifractional Brownian Motions The Multifractional Brownian Motion (mBm) Stochastic integral w.r.t. mBm White Noise Theory The mBm as limit of lumped fBm Non semi-martingales versus integration Outline of the presentation 1 Fractional and Multifractional Brownian Motions Fractional and multifractional Brownian motions The mBm as limit of lumped fBm Non semi-martingales versus integration 2 Stochastic integral w.r.t. mBm in the White Noise Theory sense Background on White Noise Theory Stochastic Integral with respect to mBm of functional parameter h Miscellaneous formulas 3/47 Joachim Lebovits, Université de Paris 13 Nord Stochastic Calculus w.r.t. mBm Fractional and multifractional Brownian motions Fractional and Multifractional Brownian Motions The Multifractional Brownian Motion (mBm) Stochastic integral w.r.t. mBm White Noise Theory The mBm as limit of lumped fBm Non semi-martingales versus integration AgaussianprocessmoreflexiblethanstandardBrownian motion (A. Kolmogorov, 1949) Definition Let H 2 (0,1) be a real constant. A process BH := (BH;t 2 R+) is an fBm if it is t centred, Gaussian, with covariance function given by: E[BHBH]=1/2(t2H +s2H |t s|2H).. t s Properties The process BH verifies BH =0,a.s. 0 H H 2H For all t > s > 0,B Bs follows the law N(0,(t s) ). t The trajectoiries de BH are contiuous. 4/47 Joachim Lebovits, Université de Paris 13 Nord Stochastic Calculus w.r.t. mBm
no reviews yet
Please Login to review.