134x Filetype PDF File size 0.46 MB Source: physics.csusb.edu
Lectures on Vector Calculus Paul Renteln Department of Physics California State University San Bernardino, CA 92407 March, 2009; Revised March, 2011 c Paul Renteln, 2009, 2011 ii Contents 1 Vector Algebra and Index Notation 1 1.1 Orthonormality and the Kronecker Delta . . . . . . . . . . . . 1 1.2 Vector Components and Dummy Indices . . . . . . . . . . . . 4 1.3 Vector Algebra I: Dot Product . . . . . . . . . . . . . . . . . . 8 1.4 The Einstein Summation Convention . . . . . . . . . . . . . . 10 1.5 Dot Products and Lengths . . . . . . . . . . . . . . . . . . . . 11 1.6 Dot Products and Angles . . . . . . . . . . . . . . . . . . . . . 12 1.7 Angles, Rotations, and Matrices . . . . . . . . . . . . . . . . . 13 1.8 Vector Algebra II: Cross Products and the Levi Civita Symbol 18 1.9 Products of Epsilon Symbols . . . . . . . . . . . . . . . . . . . 23 1.10 Determinants and Epsilon Symbols . . . . . . . . . . . . . . . 27 1.11 Vector Algebra III: Tensor Product . . . . . . . . . . . . . . . 28 1.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 Vector Calculus I 32 2.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 The Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 The Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 The Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 The Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.7 Vector Calculus with Indices . . . . . . . . . . . . . . . . . . . 43 2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Vector Calculus II: Other Coordinate Systems 48 3.1 Change of Variables from Cartesian to Spherical Polar . . . . 48 iii 3.2 Vector Fields and Derivations . . . . . . . . . . . . . . . . . . 49 3.3 Derivatives of Unit Vectors . . . . . . . . . . . . . . . . . . . . 53 3.4 Vector Components in a Non-Cartesian Basis . . . . . . . . . 54 3.5 Vector Operators in Spherical Coordinates . . . . . . . . . . . 54 3.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Vector Calculus III: Integration 57 4.1 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 Volume Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Integral Theorems 70 5.1 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Stokes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Gauss’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4 The Generalized Stokes’ Theorem . . . . . . . . . . . . . . . . 74 5.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A Permutations 76 B Determinants 77 B.1 The Determinant as a Multilinear Map . . . . . . . . . . . . . 79 B.2 Cofactors and the Adjugate . . . . . . . . . . . . . . . . . . . 82 B.3 The Determinant as Multiplicative Homomorphism . . . . . . 86 B.4 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 iv
no reviews yet
Please Login to review.