jagomart
digital resources
picture1_Calculus Pdf 168834 | Vc Notes


 134x       Filetype PDF       File size 0.46 MB       Source: physics.csusb.edu


File: Calculus Pdf 168834 | Vc Notes
lectures on vector calculus paul renteln department of physics california state university san bernardino ca 92407 march 2009 revised march 2011 c paul renteln 2009 2011 ii contents 1 vector ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
                       Lectures on Vector Calculus
                                Paul Renteln
                              Department of Physics
                             California State University
                             San Bernardino, CA 92407
                           March, 2009; Revised March, 2011
                c
                
Paul Renteln, 2009, 2011
                          ii
                         Contents
                         1 Vector Algebra and Index Notation                                                1
                             1.1   Orthonormality and the Kronecker Delta . . . . . . . . . . . .            1
                             1.2   Vector Components and Dummy Indices . . . . . . . . . . . .               4
                             1.3   Vector Algebra I: Dot Product . . . . . . . . . . . . . . . . . .         8
                             1.4   The Einstein Summation Convention . . . . . . . . . . . . . .           10
                             1.5   Dot Products and Lengths . . . . . . . . . . . . . . . . . . . .        11
                             1.6   Dot Products and Angles . . . . . . . . . . . . . . . . . . . . .       12
                             1.7   Angles, Rotations, and Matrices . . . . . . . . . . . . . . . . .       13
                             1.8   Vector Algebra II: Cross Products and the Levi Civita Symbol            18
                             1.9   Products of Epsilon Symbols . . . . . . . . . . . . . . . . . . .       23
                             1.10 Determinants and Epsilon Symbols . . . . . . . . . . . . . . .           27
                             1.11 Vector Algebra III: Tensor Product . . . . . . . . . . . . . . .         28
                             1.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     31
                         2 Vector Calculus I                                                               32
                             2.1   Fields   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
                             2.2   The Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . .      34
                             2.3   Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . .      37
                             2.4   The Divergence . . . . . . . . . . . . . . . . . . . . . . . . . .      41
                             2.5   The Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . .     41
                             2.6   The Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    42
                             2.7   Vector Calculus with Indices . . . . . . . . . . . . . . . . . . .      43
                             2.8   Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    47
                         3 Vector Calculus II: Other Coordinate Systems                                    48
                             3.1   Change of Variables from Cartesian to Spherical Polar          . . . .  48
                                                                  iii
                             3.2   Vector Fields and Derivations . . . . . . . . . . . . . . . . . .       49
                             3.3   Derivatives of Unit Vectors . . . . . . . . . . . . . . . . . . . .     53
                             3.4   Vector Components in a Non-Cartesian Basis           . . . . . . . . .  54
                             3.5   Vector Operators in Spherical Coordinates . . . . . . . . . . .         54
                             3.6   Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    57
                         4 Vector Calculus III: Integration                                                57
                             4.1   Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . .    57
                             4.2   Surface Integrals    . . . . . . . . . . . . . . . . . . . . . . . . .  64
                             4.3   Volume Integrals . . . . . . . . . . . . . . . . . . . . . . . . .      67
                             4.4   Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    69
                         5 Integral Theorems                                                               70
                             5.1   Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . .       71
                             5.2   Stokes’ Theorem      . . . . . . . . . . . . . . . . . . . . . . . . .  73
                             5.3   Gauss’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . .      74
                             5.4   The Generalized Stokes’ Theorem . . . . . . . . . . . . . . . .         74
                             5.5   Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    75
                         A Permutations                                                                    76
                         B Determinants                                                                    77
                             B.1 The Determinant as a Multilinear Map . . . . . . . . . . . . .            79
                             B.2 Cofactors and the Adjugate . . . . . . . . . . . . . . . . . . .          82
                             B.3 The Determinant as Multiplicative Homomorphism . . . . . . 86
                             B.4 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . .       89
                                                                  iv
The words contained in this file might help you see if this file matches what you are looking for:

...Lectures on vector calculus paul renteln department of physics california state university san bernardino ca march revised c ii contents algebra and index notation orthonormality the kronecker delta components dummy indices i dot product einstein summation convention products lengths angles rotations matrices cross levi civita symbol epsilon symbols determinants iii tensor problems fields gradient lagrange multipliers divergence laplacian curl with other coordinate systems change variables from cartesian to spherical polar derivations derivatives unit vectors in a non basis operators coordinates integration line integrals surface volume integral theorems green s theorem stokes gauss generalized permutations b determinant as multilinear map cofactors adjugate multiplicative homomorphism cramer rule iv...

no reviews yet
Please Login to review.