129x Filetype PDF File size 2.64 MB Source: nms.kcl.ac.uk
CM111A–Calculus I Compact Lecture Notes ACCCoolen Department of Mathematics, King’s College London Version of Sept 2011 2 1 Introduction 5 1.1 Abit of history ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Birth of modern science and of calculus Stage I, 1500–1630: from speculation to science ... . . . . . . . . . . . . . 5 1.1.2 Birth of modern science and of calculus Stage II, 1630–1680: science is written in the language of mathematics! . 8 1.1.3 Birth of modern science and of calculus Stage III, around 1680: how to speak the language of mathematics! . . . 9 1.2 Style of the course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Revision of some elementary mathematics . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Powers of real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Solving quadratic equations . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.4 Functions, inverse functions, and graphs . . . . . . . . . . . . . . . . . . 16 1.3.5 Exponential function, logarithm, laws for logarithms . . . . . . . . . . . 18 1.3.6 Trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Proof by induction 22 3 Complex numbers 25 3.1 Introduction and definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Elementary properties of complex numbers . . . . . . . . . . . . . . . . . . . . . 26 3.3 Absolute value and division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 The complex plane (Argand diagram) . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.1 Complex numbers as points in a plane . . . . . . . . . . . . . . . . . . . 28 3.4.2 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.3 The exponential form of numbers on the unit circle . . . . . . . . . . . . 31 3.5 Complex numbers in exponential notation . . . . . . . . . . . . . . . . . . . . . 33 3.5.1 Definition and general properties . . . . . . . . . . . . . . . . . . . . . . 33 3.5.2 Multiplication and division in exponential notation . . . . . . . . . . . . 34 3.5.3 The argument of a complex number . . . . . . . . . . . . . . . . . . . . . 35 3.6 De Moivre’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6.1 Statement and proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7 Complex equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 4 Trigonometric and hyperbolic functions 41 4.1 Definitions of trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 Definition of sine and cosine . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.2 Elementary values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.3 Related functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.4 Inverse trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Elementary properties of trigonometric functions . . . . . . . . . . . . . . . . . . 48 4.2.1 Symmetry properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.2 Addition formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.3 Applications of addition formulae . . . . . . . . . . . . . . . . . . . . . . 51 4.2.4 The tan(θ=2) formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Definitions of hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1 Definition of hyperbolic sine and hyperbolic cosine . . . . . . . . . . . . . 54 4.3.2 General properties and special values . . . . . . . . . . . . . . . . . . . . 55 4.3.3 Connection with trigonometric functions . . . . . . . . . . . . . . . . . . 57 4.3.4 Applications of connection with trigonometric functions . . . . . . . . . . 57 4.3.5 Inverse hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 Functions, limits and differentiation 62 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.1.1 Rate of change, tangent of a curve . . . . . . . . . . . . . . . . . . . . . . 62 5.1.2 Finding tangents and velocities – why we need limits . . . . . . . . . . . 63 5.2 The limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.1 Left and right limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.2 Asymptotics - limits involving infinity . . . . . . . . . . . . . . . . . . . . 67 5.2.3 When left/right limits exists and are identical . . . . . . . . . . . . . . . 68 5.2.4 Rules for limits of composite expressions . . . . . . . . . . . . . . . . . . 69 5.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.3 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.1 Derivatives of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.2 Rules for derivatives of composite expressions . . . . . . . . . . . . . . . 73 5.3.3 Derivatives of implicit functions . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.4 Applications of derivative: sketching graphs . . . . . . . . . . . . . . . . 79 6 Integration 80 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1.1 Area under a curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1.2 Examples of integrals calculated via staircases . . . . . . . . . . . . . . . 83 6.1.3 Fundamental theorems of calculus: integration vs differentiation . . . . . 88 4 6.1.4 Indefinite and definite integrals, and other conventions . . . . . . . . . . 90 6.2 Techniques of integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2.1 List of elementary integrals and general methods for reduction . . . . . . 92 6.2.2 Examples: integration by substitution . . . . . . . . . . . . . . . . . . . . 94 6.2.3 Examples: integration by parts . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.4 Further tricks: recursion formulae . . . . . . . . . . . . . . . . . . . . . . 98 6.2.5 Further tricks: differentiation with respect to a parameter . . . . . . . . 100 6.2.6 Further tricks: partial fractions . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Some simple applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.1 Calculation of surface areas . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.2 Calculation of volumes of revolution . . . . . . . . . . . . . . . . . . . . . 107 6.3.3 Calculation of the length of curves . . . . . . . . . . . . . . . . . . . . . 109 7 Taylor’s theorem and series 112 7.1 Introduction to series and questions of convergence . . . . . . . . . . . . . . . . 112 7.1.1 Series – notation and elementary properties . . . . . . . . . . . . . . . . 112 7.1.2 Series – convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.1.3 Power series – notation and elementary properties . . . . . . . . . . . . . 114 7.2 Taylor’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2.1 Expression for the coefficients of power series . . . . . . . . . . . . . . . . 117 7.2.2 Taylor series around x = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2.3 Taylor series around x = a . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3.1 Series expansions for standard functions . . . . . . . . . . . . . . . . . . 121 7.3.2 Indirect methods for finding Taylor series . . . . . . . . . . . . . . . . . . 122 7.4 L’Hopital’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8 Exercises 125
no reviews yet
Please Login to review.