jagomart
digital resources
picture1_Geometry Pdf 167778 | May 5 Semi Riemannian Geometry


 143x       Filetype PDF       File size 0.40 MB       Source: www.kth.se


File: Geometry Pdf 167778 | May 5 Semi Riemannian Geometry
abrief introduction to semi riemannian geometry and general relativity hans ringstr om may 5 2015 2 contents 1 scalar product spaces 1 1 1 scalar products 1 1 2 orthonormal ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
          Abrief introduction to Semi-Riemannian geometry and
                     general relativity
                       Hans Ringstr¨om
                       May 5, 2015
          2
                       Contents
                       1 Scalar product spaces                                                                                  1
                           1.1   Scalar products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
                           1.2   Orthonormal bases adapted to subspaces . . . . . . . . . . . . . . . . . . . . . . . .         3
                           1.3   Causality for Lorentz scalar product spaces . . . . . . . . . . . . . . . . . . . . . .        4
                       2 Semi-Riemannian manifolds                                                                              7
                           2.1   Semi-Riemannian metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        7
                           2.2   Pullback, isometries and musical isomorphisms . . . . . . . . . . . . . . . . . . . .          8
                           2.3   Causal notions in Lorentz geometry . . . . . . . . . . . . . . . . . . . . . . . . . . .      10
                           2.4   Warped product metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      11
                           2.5   Existence of metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    11
                           2.6   Riemannian distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      12
                           2.7   Relevance of the Euclidean and the Minkowski metrics . . . . . . . . . . . . . . . .          13
                       3 Levi-Civita connection                                                                                15
                           3.1   The Levi-Civita connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      15
                           3.2   Parallel translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
                           3.3   Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   20
                           3.4   Variational characterization of geodesics . . . . . . . . . . . . . . . . . . . . . . . .     22
                       4 Curvature                                                                                             25
                           4.1   The curvature tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    25
                           4.2   Calculating the curvature tensor      . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
                           4.3   The Ricci tensor and scalar curvature      . . . . . . . . . . . . . . . . . . . . . . . . .  27
                           4.4   The divergence, the gradient and the Laplacian . . . . . . . . . . . . . . . . . . . .        29
                           4.5   Computing the covariant derivative of tensor fields . . . . . . . . . . . . . . . . . .        29
                                 4.5.1   Divergence of a covariant 2-tensor field . . . . . . . . . . . . . . . . . . . . .     30
                           4.6   An example of a curvature calculation . . . . . . . . . . . . . . . . . . . . . . . . .       31
                                 4.6.1   Computing the connection coefficients . . . . . . . . . . . . . . . . . . . . .         32
                                 4.6.2   Calculating the components of the Ricci tensor . . . . . . . . . . . . . . . .        33
                           4.7   The 2-sphere and hyperbolic space . . . . . . . . . . . . . . . . . . . . . . . . . . .       34
                                                                            i
                       ii                                                                                       CONTENTS
                                4.7.1   The Ricci curvature of the 2-sphere . . . . . . . . . . . . . . . . . . . . . . .   35
                                4.7.2   The curvature of the upper half space model of hyperbolic space . . . . . .         36
The words contained in this file might help you see if this file matches what you are looking for:

...Abrief introduction to semi riemannian geometry and general relativity hans ringstr om may contents scalar product spaces products orthonormal bases adapted subspaces causality for lorentz manifolds metrics pullback isometries musical isomorphisms causal notions in warped existence of distance function relevance the euclidean minkowski levi civita connection parallel translation geodesics variational characterization curvature tensor calculating ricci divergence gradient laplacian computing covariant derivative elds a eld an example calculation coecients components sphere hyperbolic space i ii upper half model...

no reviews yet
Please Login to review.