jagomart
digital resources
picture1_Geometry Pdf 167001 | Rag Item Download 2023-01-25 00-53-02


 127x       Filetype PDF       File size 1.22 MB       Source: pbrdng.github.io


File: Geometry Pdf 167001 | Rag Item Download 2023-01-25 00-53-02
metric and random algebraic geometry paul breiding and antonio lerario author s addresses paul breiding universit at osnabruc k pbreiding uni osnabrueck de antonio lerario sissa lerario sissa it p ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
              Metric and Random
               Algebraic Geometry
              Paul Breiding and Antonio Lerario
         Author’s addresses:
         Paul Breiding, Universit¨at Osnabruc¨ k, pbreiding@uni-osnabrueck.de.
         Antonio Lerario, SISSA, lerario@sissa.it.
        P. Breiding has been funded by the Deutsche Forschungsgemeinschaft
        (DFG, German Research Foundation) – Projektnummer 445466444.
                         ii
                    Contents
                    1 How many zeros of a polynomial are real?                                                1
                        1.1   Discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       3
                        1.2   Real discriminants     . . . . . . . . . . . . . . . . . . . . . . . . . . .    7
                        1.3   Reasonable probability distributions . . . . . . . . . . . . . . . . . .        9
                        1.4   The Kostlan distribution . . . . . . . . . . . . . . . . . . . . . . . .      12
                        1.5   Expected properties . . . . . . . . . . . . . . . . . . . . . . . . . . .     13
                    2 Riemannian manifolds and probability                                                  16
                        2.1   Basics from differential geometry      . . . . . . . . . . . . . . . . . . .  16
                              2.1.1   Basic notions and examples . . . . . . . . . . . . . . . . . .        16
                              2.1.2   Vector bundles     . . . . . . . . . . . . . . . . . . . . . . . . .   23
                        2.2   The Riemannian volume . . . . . . . . . . . . . . . . . . . . . . . .         26
                              2.2.1   Riemannian manifolds and integrals . . . . . . . . . . . . . .        26
                              2.2.2   Measure theoretic considerations       . . . . . . . . . . . . . . .  29
                              2.2.3   The coarea formula . . . . . . . . . . . . . . . . . . . . . . .      30
                              2.2.4   Isometries and Riemannian submersions . . . . . . . . . . .           32
                              2.2.5   Volume of the sphere and projective space . . . . . . . . . .         33
                              2.2.6   Volume of the Orthogonal and Unitary group . . . . . . . .            36
                    3 Semialgebraic geometry                                                                38
                        3.1   Semialgebraic sets and functions . . . . . . . . . . . . . . . . . . . .      38
                        3.2   Decomposition of semialgebraic sets and their stratification . . . . .        41
                        3.3   Cohomology of semialgebraic sets . . . . . . . . . . . . . . . . . . .        47
                        3.4   The mapping cyclinder of semialgebraic functions . . . . . . . . . .          51
                        3.5   Semialgebraic triviality . . . . . . . . . . . . . . . . . . . . . . . . .     56
                    4 Topology of algebraic sets                                                            60
                        4.1   Thom’s Isotopy Lemma . . . . . . . . . . . . . . . . . . . . . . . . .         60
                        4.2   Abound on the Betti numbers of real algebraic sets . . . . . . . . .          66
                        4.3   The fundamental class of a real algebraic set . . . . . . . . . . . . .       73
                    5 The Kac-Rice formula                                                                  79
                        5.1   The Kac-Rice formula in Euclidean Space          . . . . . . . . . . . . . .  80
                        5.2   Root density of Kac polynomials        . . . . . . . . . . . . . . . . . . .  84
                                                                iii
                        5.3   The Kac-Rice formula for random maps on manifolds . . . . . . . .              88
                        5.4   Root density of systems of Kostlan polynomials . . . . . . . . . . .           90
                        5.5   Random sections of vector bundles         . . . . . . . . . . . . . . . . . .  93
                        5.6   There are 6√2−3 lines on a real cubic surface . . . . . . . . . . . .          97
                    6 Homogeneous spaces and integral geometry                                              101
                        6.1   Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
                        6.2   The Haar measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
                        6.3   Volumes of homogeneous spaces . . . . . . . . . . . . . . . . . . . . 103
                        6.4   Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
                        6.5   Integral geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
                        6.6   Probabilistic intersection theory in projective space . . . . . . . . . 109
                        6.7   Proof of the integral geometry formula . . . . . . . . . . . . . . . . 112
                    7 Representation theory                                                                 116
                        7.1   Invariant Hermitian structures . . . . . . . . . . . . . . . . . . . . . 121
                        7.2   Classification of real invariant inner products . . . . . . . . . . . . . 123
                    8 Invariant inner products on the space of polynomials                                  130
                        8.1   Complex invariant distributions . . . . . . . . . . . . . . . . . . . . 130
                        8.2   Real invariant distributions     . . . . . . . . . . . . . . . . . . . . . . 132
                              8.2.1   Spherical harmonics      . . . . . . . . . . . . . . . . . . . . . . 134
                    9 Discriminants                                                                         140
                        9.1   The main theorem of elimination theory . . . . . . . . . . . . . . . 140
                        9.2   The discriminant in the space of complex polynomials . . . . . . . . 143
                        9.3   The discriminant in the space of real polynomials . . . . . . . . . . 152
                        9.4   The discriminant in the space of real quadrics . . . . . . . . . . . . 157
                        9.5   The distance to the discriminant . . . . . . . . . . . . . . . . . . . . 161
The words contained in this file might help you see if this file matches what you are looking for:

...Metric and random algebraic geometry paul breiding antonio lerario author s addresses universit at osnabruc k pbreiding uni osnabrueck de sissa it p has been funded by the deutsche forschungsgemeinschaft dfg german research foundation projektnummer ii contents how many zeros of a polynomial are real discriminants reasonable probability distributions kostlan distribution expected properties riemannian manifolds basics from differential basic notions examples vector bundles volume integrals measure theoretic considerations coarea formula isometries submersions sphere projective space orthogonal unitary group semialgebraic sets functions decomposition their stratification cohomology mapping cyclinder triviality topology thom isotopy lemma abound on betti numbers fundamental class set kac rice in euclidean root density polynomials iii for maps systems sections there lines cubic surface homogeneous spaces integral lie groups haar volumes grassmannians probabilistic intersection theory proof...

no reviews yet
Please Login to review.