127x Filetype PDF File size 1.22 MB Source: pbrdng.github.io
Metric and Random Algebraic Geometry Paul Breiding and Antonio Lerario Author’s addresses: Paul Breiding, Universit¨at Osnabruc¨ k, pbreiding@uni-osnabrueck.de. Antonio Lerario, SISSA, lerario@sissa.it. P. Breiding has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 445466444. ii Contents 1 How many zeros of a polynomial are real? 1 1.1 Discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Real discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Reasonable probability distributions . . . . . . . . . . . . . . . . . . 9 1.4 The Kostlan distribution . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Expected properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Riemannian manifolds and probability 16 2.1 Basics from differential geometry . . . . . . . . . . . . . . . . . . . 16 2.1.1 Basic notions and examples . . . . . . . . . . . . . . . . . . 16 2.1.2 Vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 The Riemannian volume . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Riemannian manifolds and integrals . . . . . . . . . . . . . . 26 2.2.2 Measure theoretic considerations . . . . . . . . . . . . . . . 29 2.2.3 The coarea formula . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4 Isometries and Riemannian submersions . . . . . . . . . . . 32 2.2.5 Volume of the sphere and projective space . . . . . . . . . . 33 2.2.6 Volume of the Orthogonal and Unitary group . . . . . . . . 36 3 Semialgebraic geometry 38 3.1 Semialgebraic sets and functions . . . . . . . . . . . . . . . . . . . . 38 3.2 Decomposition of semialgebraic sets and their stratification . . . . . 41 3.3 Cohomology of semialgebraic sets . . . . . . . . . . . . . . . . . . . 47 3.4 The mapping cyclinder of semialgebraic functions . . . . . . . . . . 51 3.5 Semialgebraic triviality . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Topology of algebraic sets 60 4.1 Thom’s Isotopy Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Abound on the Betti numbers of real algebraic sets . . . . . . . . . 66 4.3 The fundamental class of a real algebraic set . . . . . . . . . . . . . 73 5 The Kac-Rice formula 79 5.1 The Kac-Rice formula in Euclidean Space . . . . . . . . . . . . . . 80 5.2 Root density of Kac polynomials . . . . . . . . . . . . . . . . . . . 84 iii 5.3 The Kac-Rice formula for random maps on manifolds . . . . . . . . 88 5.4 Root density of systems of Kostlan polynomials . . . . . . . . . . . 90 5.5 Random sections of vector bundles . . . . . . . . . . . . . . . . . . 93 5.6 There are 6√2−3 lines on a real cubic surface . . . . . . . . . . . . 97 6 Homogeneous spaces and integral geometry 101 6.1 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 The Haar measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Volumes of homogeneous spaces . . . . . . . . . . . . . . . . . . . . 103 6.4 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.5 Integral geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.6 Probabilistic intersection theory in projective space . . . . . . . . . 109 6.7 Proof of the integral geometry formula . . . . . . . . . . . . . . . . 112 7 Representation theory 116 7.1 Invariant Hermitian structures . . . . . . . . . . . . . . . . . . . . . 121 7.2 Classification of real invariant inner products . . . . . . . . . . . . . 123 8 Invariant inner products on the space of polynomials 130 8.1 Complex invariant distributions . . . . . . . . . . . . . . . . . . . . 130 8.2 Real invariant distributions . . . . . . . . . . . . . . . . . . . . . . 132 8.2.1 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . 134 9 Discriminants 140 9.1 The main theorem of elimination theory . . . . . . . . . . . . . . . 140 9.2 The discriminant in the space of complex polynomials . . . . . . . . 143 9.3 The discriminant in the space of real polynomials . . . . . . . . . . 152 9.4 The discriminant in the space of real quadrics . . . . . . . . . . . . 157 9.5 The distance to the discriminant . . . . . . . . . . . . . . . . . . . . 161
no reviews yet
Please Login to review.