141x Filetype PDF File size 0.51 MB Source: empg.maths.ed.ac.uk
SpinGeometry JoséFigueroa-O’Farrill* http://empg.maths.ed.ac.uk/Activities/Spin Versionof18thMay2017 These are the notes accompanying the lectures on Spin Geometry, a PG course taught in EdinburghintheSpringof2010. Theonlyrequirementisaworkingfamiliaritywithbasicdifferentialgeometryandbasicrep- resentation theory; although scholia on the necessary definitions will be scattered through- outthenotes. Anystatementwhichisnotprovedtoyoursatisfactionistobethoughtofasanexercise,even if not explicitly labelled as such! These notes are still in a state of flux and I am happy to receive comments and suggestions either by email or in person. *✉j.m.figueroa(at)ed.ac.uk 1 Spin2010(jmf) 2 Contents 1 Cliffordalgebras: basicnotions 4 1.1 Quadraticvectorspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 TheCliffordalgebra,categorically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 TheCliffordalgebraasCliffordwouldhavewrittenit . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Clifford algebra in terms of generators and relations . . . . . . . . . . . . . . . . . . . 7 1.3.2 Low-dimensionalCliffordalgebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 TheCliffordalgebraandtheexterioralgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Filtered andassociatedgradedalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.2 TheZ2-gradingrevisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 ThefiltrationoftheCliffordalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.4 TheactionofCℓ(V,Q)onΛV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.5 TheCliffordinnerproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Cliffordalgebras: theclassification 12 2.1 Aless-than-usefulclassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 ComplexCliffordalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 FillingintheCliffordchessboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 TheevensubalgebraoftheCliffordalgebra . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 ClassificationofcomplexCliffordalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Spinorrepresentations 20 3.1 TheorthogonalgroupanditsLiealgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 PinandSpin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Pinorsandspinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 s −t =0 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 s −t =1 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.3 s −t =2 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.4 s −t =3 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.5 s −t =4 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.6 s −t =5 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.7 s −t =6 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.8 s −t =7 (mod 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Innerproductsforpinorsandspinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Spinmanifolds 28 4.1 Whatisamanifold? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Fibrebundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Basicnotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 Constructionfromlocaldata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.3 Vectorandprincipalbundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.4 Equivalenceclassesofprincipalbundles . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Fibrebundlesonriemannianmanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.1 Orientability andtheorthonormalframebundle . . . . . . . . . . . . . . . . . . . . . 32 4.3.2 TheCliffordbundleandtheobstructiontodefiningapinorbundle . . . . . . . . . . 33 4.3.3 Spinstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Spin2010(jmf) 3 5 Connectionsonprincipalandvectorbundles 36 5.1 Connectionsonprincipalbundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1.1 Connectionsashorizontaldistributions . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.2 Theconnectionone-form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.3 Thehorizontalprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.4 Thecurvature2-form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Connectionsonvectorbundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.1 Koszulconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.2 Basicforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.3 Thecovariantderivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.4 Gaugefields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6 Thespinconnection 44 6.1 TheLevi-Civitaconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2 Theconnectionone-formsonO(M),SO(M)andSpin(M) . . . . . . . . . . . . . . . . . . . . 45 6.3 Parallelspinorfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7 Holonomygroups 48 7.1 Paralleltransportinprincipalfibrebundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.2 Paralleltransportonvectorbundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.3 Theholonomyprinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.4 Riemannianholonomygroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.4.1 Kählermanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.4.2 Calabi–Yaumanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.4.3 ManifoldsofG holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2 7.4.4 Ricci-flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8 ParallelandKillingspinorfields 54 8.1 Manifoldsadmittingparallelspinorfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.1.1 Calabi–Yau3-folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.1.2 ManifoldsofG holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2 8.1.3 Somecommentsaboutindefinitesignature . . . . . . . . . . . . . . . . . . . . . . . . 55 8.2 Manifoldsadmitting(real)Killingspinorfields . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.2.1 TheDiracoperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.2.2 ThePenroseoperatorandtwistorspinorfields . . . . . . . . . . . . . . . . . . . . . . 56 8.2.3 Killing spinor fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.2.4 Theconeconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.2.5 Theclassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Spin2010(jmf) 4 Lecture1: Cliffordalgebras: basicnotions Considernowasystemofn unitsι ,ι ,...,ι suchthatthe 1 2 n multiplication of any two of them is polar; that is, ι ι = r s −ι ι . s r —WilliamKingdonClifford,1878 In this lecture we define the Clifford algebra of a quadratic vector space and view it from three dif- ferent points of view: the contemporary categorical formulation, Clifford’s original formulation and as aquantisationoftheexterioralgebra. 1.1 Quadraticvectorspaces ThroughoutK=RorC. LetV beafinite-dimensionalvectorspaceoverK,letB:V×V→Kbea(pos- sibly degenerate) symmetric bilinear form and let Q:V →Kdenotethecorrespondingquadraticform, definedbyQ(x)=B(x,x).OnecanrecoverBfromQbypolarisation,namely 1 ¡ ¢ (1) B(x,y)= 2 Q(x+y)−Q(x)−Q(y) . Thepair(V,Q)iscalledaquadraticvectorspace(overK). TheyaretheobjectsofacategoryQVecwith morphisms(V,QV)→(W,QW)givenbylinearmaps f :V →W suchthat f∗QW =QV, orexplicitly that QW(f(x))=QV(x)forall x ∈V. The zero vector space with the zero quadratic form is an initial object in QVec. The absence of terminal objects and (co)products is due to the fact that projections do not generallypreservenorms. We will see that the Clifford algebra Cℓ(V,Q) of a quadratic vector space (V,Q) is an associative, unital K-algebra, with a natural filtration and a Z2-grading, and moreover that the assignment (V,Q)7→ Cℓ(V,Q)isfunctorial. There are several ways to understand Cℓ(V,Q): from the very abstract to the very concrete. The latter is good for computations, whereas the former is good to prove theorems which may free us from computations. ThereforewewilllookatCℓ(V,Q)inseveralways,startingwiththecategoricaldefinition. jAllourassociativealgebrasareunital,unlessotherwisestated! 1.2 TheCliffordalgebra,categorically Let(V,Q)beaquadraticvectorspaceandletAbeanassociativeK-algebra. WesaythataK-linearmap φ:V→AisCliffordifforallx∈V, 2 (2) φ(x) =−Q(x)1A, where 1A is the unit of A. Clifford maps from a fixed quadratic vector space (V,Q) are the objects of a categoryCliff(V,Q),whereamorphismfromV→AtoV→A′isgivenbyacommutingtriangle (3) V f ′ A //A with f :A→A′ ahomomorphismofassociativealgebras.
no reviews yet
Please Login to review.