220x Filetype PDF File size 3.26 MB Source: portal.tpu.ru
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» V.V. Konev LINEAR ALGEBRA, VECTOR ALGEBRA AND ANALYTICAL GEOMETRY TextBook Рекомендовано в качестве учебного пособия Редакционно-издательским советом Томского политехнического университета Издательство Томского политехнического университета 2009 UDС 517 V.V. Konev. Linear Algebra, Vector Algebra and Analytical Geometry. Textbook. Tomsk: TPU Press, 2009, 114 pp. This textbook consists of 3 parts devoted to the mathematical methods of Linear Algebra and Analytical Geometry based on the vector analysis technique. The basic concepts are explained by examples and illustrated by figures. The textbook is helpful for students who want to understand and be able to use matrix operations, solve systems of linear equations, analyze relative positions of figures, transform coordinate systems, and so on. The textbook is designed to English speaking students. Reviewed by: V.A. Kilin, Professor of the Higher Mathematics Department, TPU, D.Sc. © Konev V.V. 2001-2009 © Tomsk Polytechnic University, 2001-2009 PREFACE This textbook is intended for students who have already studied basic mathematics and need to study the methods of higher mathematics. It covers three content areas: Linear Algebra, Vector Algebra and Analytical Geometry. Each part contains basic mathematical conceptions and explains new mathematical terms. Many useful examples and exercises are presented in the textbook. explained and illustrated by examples and exercises. The Linear Algebra topics include matrix operations, determinants and systems of linear equations. In the section “Vector Algebra”, a main attention is paid to the geometrical applications of vector operations. The vector approach is considered to be basic for discussion of classic problems of Analytical Geometry. The author welcomes reader’s suggestions for improvement of future editions of this textbook. 6 CONTENTS Preface ……………………..………………………………………… 3 Contents ……………………………………………………………….. 4 LINEAR ALGEBRA Chapter 1. MATRICES 1.1. Basic Definitions ……………………………………………. . 7 1.2. Matrix Operations ……………………………………………. 8 1.3. Types of Matrices …………………………………………. … 12 1.4. Kronecker Delta Symbol……………………………………… 15 1.5. Properties of Matrix Operations……………………………… 16 Chapter 2. DETERMINANTS 2.1. Permutations and Transpositions……………………………… 20 2.2. Determinant General Definition ……………………………... 23 2.3. Properties of Determinants …………………………………... 25 2.4. Determinant Calculation……………………………………… 31 Chapter 3. INVERSE MATRICES 3.1. Three Lemmas ……………………………………………….. 36 3.2. Theorem of Inverse Matrix …………………………………... 38 3.2.1. Examples ……….…………………………………………. 39 3.3. Calculation of Inverse Matrices by Elementary Transformations ……………………………………………… 42 Chapter 4. SYSTEMS OF LINEAR EQUATIONS 4.1. Matrix Rank ………………………………………………….. 43 4.2. Basic Concepts ………………………………………………. 45 4.3. Gaussian Elimination ………………………………………… 46 4.3.1. Examples ………………………………………………….. 47 4.4. Homogeneous Systems of Linear Equations………………… 50 4.4.1. Examples …………………………………………………. 51 4.5. Cramer’s Rule ……………………………………………….. 54 4.6. Cramer’s General Rule ……………………………………… 57 4
no reviews yet
Please Login to review.