jagomart
digital resources
picture1_Rotational Dynamics Pdf 158230 | Rot Dynam 09


 169x       Filetype PDF       File size 0.66 MB       Source: websites.pmc.ucsc.edu


File: Rotational Dynamics Pdf 158230 | Rot Dynam 09
bills et al rotational dynamics of europa 119 rotational dynamics of europa bruce g bills nasa goddard space flight center and scripps institution of oceanography francis nimmo university of california ...

icon picture PDF Filetype PDF | Posted on 19 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                                                 Bills et al.: Rotational Dynamics of Europa        119
                                                               Rotational Dynamics of Europa
                                                                                    Bruce G. Bills
                                                                           NASA Goddard Space Flight Center
                                                                        and Scripps Institution of Oceanography
                                                                                   Francis Nimmo
                                                                           University of California, Santa Cruz
                                                                     Özgür Karatekin, Tim Van Hoolst,
                                                                              and Nicolas Rambaux
                                                                              Royal Observatory of Belgium
                                                                                 Benjamin Levrard
                                                              Institut de Mécanique Céleste et de Calcul des Ephémérides
                                                                         and Ecole Normale Superieure de Lyon
                                                                                   Jacques Laskar
                                                              Institut de Mécanique Céleste et de Calcul des Ephémérides
                                               The rotational state of Europa is only rather poorly constrained at present. It is known to
                                            rotate about an axis that is nearly perpendicular to the orbit plane, at a rate that is nearly constant
                                            and approximates the mean orbital rate. Small departures from a constant rotation rate and os-
                                            cillations of the rotation axis both lead to stresses that may influence the location and orienta-
                                            tion of surface tectonic features. However, at present geological evidence for either of these
                                            processes is disputed. We describe a variety of issues that future geodetic observations will
                                            likely resolve, including variations in the rate and direction of rotation, on a wide range of
                                            timescales. Since the external perturbations causing these changes are generally well known,
                                            observations of the amplitude and phase of the responses will provide important information
                                            about the internal structure of Europa. We focus on three aspects of the rotational dynamics:
                                            obliquity, forced librations, and possible small departures from a synchronous rotation rate.
                                            Europa’s obliquity should be nonzero, while the rotation rate is likely to be synchronous unless
                                            lateral shell thickness variations occur. The tectonic consequences of a nonzero obliquity and
                                            true polar wander have yet to be thoroughly investigated.
                                           1.   INTRODUCTION                                     state of Europa is that its rotation rate is very close to syn-
                                                                                                 chronous, and the direction of its spin pole is very close to
                          The primary objective of this chapter is to describe a                 that of its orbit pole, so the obliquity is very small.
                      variety of rotational phenomena that Europa is expected to                     As we will discuss below, dynamical arguments suggest
                      exhibit, and that will, when properly observed, provide                    that the mean rotation rate is indeed equal to the mean or-
                      important diagnostic information about the internal struc-                 bital rate, but that the obliquity (the angle between orbit pole
                      ture. The rotational state of any planet or satellite is impor-            and spin pole), while small, is nonzero. These assertions are
                      tant to understand for at least three reasons. First, proper               at odds with what is usually assumed about the rotation of
                      collation of observations at various epochs and locations                  Europa in studies attempting to interpret the tectonics of
                      requires a good understanding of the rotation rate and di-                 the body, and thus need to be carefully explored and sup-
                      rection of the rotation pole. Second, some aspects of the                  ported. In addition, gravitational torques from Jupiter are
                      mean rotation state, and all plausible variations in the rota-             expected to cause librations, which are periodic variations in
                      tion state, provide information about the structure of the                 the direction and rate of rotation. As the position and mass
                      interior. Third, variations in rotation rate or rotation axis              of Jupiter are well known, the amplitude and phase of these
                      orientation lead to global stresses, thus surface tectonic fea-            variations are diagnostic of internal structure.
                      tures may constrain the existence of such processes. All that                  This chapter will consist of three main parts. (1) The first
                      is presently known, from observations, about the rotation                  part will discuss the obliquity history of Europa, and explain
                                                                                             119
               120        Europa
               how observations of the current orientation of the spin pole         about the internal structure of the body. Most of the remain-
               will constrain the moments of inertia of the body. (2) The           der of this section will attempt to explain that connection.
               second part will discuss forced librations, with primary em-
               phasis on longitudinal librations. It will also be discussed         2.1.  Moments and Precession
               how observations of the amplitude and phase of the periodic
               variations in rotation rate will constrain internal structure.          Measurements of the mass M and mean radius R of a
               (3) The third part will discuss arguments for and against            satellite yield a mean density estimate, which for Europa
               nonsynchronous rotation (NSR). Most models of tidal dis-             is already rather well known (Anderson et al., 1998a)
               sipation predict that a body like Europa will be close to a
                                                                                                                                –3
               synchronous rotation state, but that the rotation rate at which                       〈ρ〉 = (2989 ± 46) kg m                     (1)
               the tidal torque vanishes differs slightly from exact synchro-
               nism. From a dynamical perspective, the question is whether          The Galilean satellites show an interesting progression of
               gravitational torques on a permanent asymmetry are large             decreasing density with increasing distance from Jupiter
               enough to “finish the job.” We will also briefly discuss the         (Johnson, 2005), but density only rather weakly constrains
               associated issue of true polar wander (TPW) of the ice shell.        internal structure (Consolmagno and Lewis, 1978). How-
                                                                                    ever, the moments of inertia provide additional constraints
                                     2.   OBLIQUITY                                 on the radial density structure (Bills and Rubincam, 1995;
                                                                                    Sotin and Tobie, 2004). There are several ways to estimate
                   In this section we discuss the obliquity of Europa. The          the moments of inertia, and the rotational dynamics pro-
               obliquity of a planet or satellite is the angular separation         vide several options.
               between its spin pole and orbit pole, or equivalently, the              Perturbations of spacecraft trajectories, either on cap-
               angle between the equator plane and orbit plane. For Earth,          tured orbits or during a close flyby, can be used to infer
               the current obliquity is 23.439° (Lieske et al., 1977), which        the low-degree terms in the gravitational potential. The
               sets the locations of the tropics of Cancer and Capricorn,           coefficients of harmonic degree 2 in the gravitational po-
               which are the northern and southern limits at which the Sun          tential of a body are related to the principal moments of
               appears directly overhead, and the Arctic and Antarctic              inertia (A < B < C) via (Soler, 1984)
               circles, which are the equatorward limits beyond which the
                                                                                                             2
               Sun does not rise on the days of the corresponding solstices.                          J MR  = C – (A + B)/2                     (2)
                                                                                                       2
                                                                                                                2
               Earth’s obliquity is presently decreasing (Rubincam et al.,                              C2,2MR  = (B – A)/4
               1998), and oscillates between 22.1° and 24.5° with a 41-k.y.
               period (Berger et al., 1992; Laskar et al., 1993), due to            There are, in general, five terms of harmonic degree 2, and
               lunar and solar torques on Earth’s oblate figure. The associ-        six independent terms in the inertia tensor. However, if the
               ated changes in seasonal and latitudinal patterns of insola-         coordinate axes are chosen to coincide with the principal
               tion have a significant impact upon global climate (Milanko-         axes of the inertial ellipsoid, then only these two potential
               vitch, 1941; Hays et al., 1976; Hinnov and Ogg, 2007).               terms remain. Measurements of the gravitational field alone
                   For planetary satellites, the solar radiation cycles can be      do not suffice to determine the moments of inertia, as the
               more complex, depending as they do upon the obliquity of             system of equations is underdetermined by 1.
               the planet, inclination of the satellite orbit, and obliquity           One approach to estimating those moments, in the ab-
               of the satellite itself. Several recent studies of the radiative     sence of further constraints, is to assume that the body is in
               environment of Titan (Flasar, 1998; Roos-Serote, 2005;               hydrostatic equilibrium, and that the degree-2 harmonics of
               Tokano and Neubauer, 2005) have referred to the angular              the gravity field reflect a response to the well-known tidal
               separation between the spin pole of Titan and the orbit pole         and rotational potentials. This approach was developed by
               of Saturn as Titan’s obliquity. This angle, approximately            Hubbard and Anderson (1978) and applied to Europa by
               equal to the 26.73° dynamical obliquity of Saturn (Ward and          Anderson et al. (1998a) (see chapter by Schubert et al.). That
               Hamilton, 2004; Hamilton and Ward, 2004), is certainly the           method provides the current best estimates of the moments
               relevant angle for consideration of radiative input to the           of inertia of the Galilean satellites (Anderson et al., 1996a,b,
               atmosphere of Titan. However, from an orbital and rota-              1998a,b). In terms of the dimensionless polar moment
               tional dynamics perspective, the important angle is the much
               smaller separation between the spin pole of Titan and the                                      c =   C                           (3)
               pole of its own orbit about Saturn. Likewise for Europa,                                            MR2
               we are interested in its own dynamical obliquity. As the
               obliquity of Jupiter is only about 3.1° (Ward and Canup,             the Galilean satellite values are {0.379, 0.346, 0.311, 0.355},
               2006), the solar radiative pattern at Europa is simpler than         for Io, Europa, Ganymede and Callisto, respectively (Schu-
               for Titan.                                                           bert et al., 2004). Recall that a homogeneous sphere has
                   The obliquity of Europa is not currently known, other            c = 2/5, and smaller values indicate a more centrally con-
               than that it is certainly quite small (Lieske, 1979). However,       densed structure.
               when measurement accuracies increase sufficiently to allow              The hydrostatic assumption can be verified if both J  and
                                                                                                                                              2
               a determination of that value, it will provide information           C  can be measured independently, since for a hydrostatic
                                                                                     2,2
                                                                                                                 Bills et al.: Rotational Dynamics of Europa        121
                      body the ratio of these two quantities is 10/3 (e.g., Murray                   The most complex spin pole motion occurs when the
                      and Dermott, 1999). However, determination of J2 requires                  orbit pole rates and spin pole rate are comparable. In that
                      polar or near-polar flybys, while C2,2 requires equatorial or              case, the motion of the spin pole is resonantly enhanced.
                      near-equatorial trajectories, so that it is not always possible            These features are extensively discussed in the literature on
                      (as at Callisto) (Anderson et al., 1998a) to verify the hy-                Mars obliquity variations (Ward, 1973, 1992; Bills, 1990).
                      drostatic assumption.                                                      The orbital precession amplitudes for Earth and Mars are
                          Other approaches to determining internal structure rely                similar, and the periods are identical, but Mars has obliq-
                      upon the fact that the rotational dynamics of the body are                 uity variations that are substantially larger than those for
                      controlled by the moments of inertia. It is often the case                 Earth because the spin pole precession rate of Earth is too
                      that the applied torques are well known, and that observa-                 fast for resonance enhancement, whereas Mars does see
                      tions of the rotational response thus constrain the moments.               resonant effects. In fact, it has been claimed that the obliq-
                      For a rapidly rotating body, like Earth or Mars, the solar                 uity variations for Mars are chaotic (Touma and Wisdom,
                      gravitational torque acting on the oblate figure of the body               1993; Laskar and Robutel, 1993). However, even relatively
                      causes it to precess about its orbit pole. If we ignore effects            small amounts of dissipation will suppress the chaotic varia-
                      of an eccentric orbit, the precessional motion of the unit                 tions (Bills and Comstock, 2005; Bills, 1994, 1999, 2005).
                      vector sˆ, aligned with the spin pole, is governed by                          A resonant enhancement of spin pole motion requires
                                                                                                 orbital precession rates comparable to the spin pole preces-
                                              ˆ                                                  sion rate. However, for most solar system bodies, the dif-
                                            ds        ˆˆˆˆ                               (4)
                                            dt = α (n · s) (s × n)                               ference between polar and equatorial moments is a small
                                                                                                 fraction of either value, and thus the spin pole precession
                      where nˆ is the orbit pole unit vector, and α is a spin preces-            rates are much slower than the spin or orbital rates. How-
                      sion rate parameter given by (Kinoshita, 1977; Ward, 1973)                 ever, there are often orbit-orbit interactions, so-called secu-
                                                                                                 lar perturbations, that have periods much longer than the
                                               3 n2 C – (A + B)/2                                orbital periods. It is a near commensurability between the
                                         α = 2 ω              C                                  spin pole precession rate of Mars, and some of its secular
                                                                                         (5)     orbital variations, which give rise to the large obliquity vari-
                                                   2   J
                                            = 3 n       2                                        ations.
                                               2 ω     c                                             The situation at Europa is not particularly well approxi-
                                                                                                 mated by either Earth or Mars. A somewhat more relevant
                      with n the orbital mean motion, and ω the spin rate.                       analog is provided by the Moon. The rotational state of the
                          If both of the degree-2 gravity coefficients and the spin              Moon is well approximated by three features, first enunci-
                      pole precession rate α can be measured, as has been done                   ated by G. D. Cassini in 1693, which can be paraphrased
                      for Earth (Hilton et al., 2006) and Mars (Folkner et al.,                  as (1) the spin period and orbit period are identical; (2) the
                      1997), then the polar moment C can be estimated, without                   spin axis maintains a constant inclination to the ecliptic
                      requiring the hydrostatic assumption. That is, in fact, how                pole; and (3) the spin axis, orbit pole, and ecliptic pole re-
                      the moments of inertia of those two bodies were determined.                main coplanar.
                      A difficulty with this approach, of directly observing the                     The first of these had, of course, been known much ear-
                      spin pole precession rate, is that typical rates are very low.             lier, and the dynamical importance of the second and third
                      For Earth and Mars, the spin pole precession rates are 50                  laws was not fully appreciated until much later. It is now
                      and 10 arcsec/yr, respectively. The challenge of seeing the                understood (Colombo, 1966; Peale, 1969; Ward, 1975a;
                      spin pole of Europa precess, without a relatively long-lived               Gladman et al., 1996) that adjustment of the obliquity to
                      lander, would be formidable. Fortunately, there are better                 achieve co-precession of the spin and orbit poles about an
                      ways to accomplish the same objective.                                     invariable pole can occur without synchronous locking of
                                                                                                 the spin and orbit periods. That is, Cassini’s first law is at
                      2.2.    Spin Pole Trajectories                                             least partially decoupled from the other two. In fact, most
                                                                                                 features of the lunar spin pole motion are reproduced in a
                          We now consider briefly how the spin pole precession                   model where the lunar gravity field is approximated as axi-
                      trajectory depends on the motion of the orbit pole. In the                 symmetric (Wisdom, 2006).
                      simplest case, where the orbit plane orientation remains                       The condition for this coplanar precession, in nearly
                      constant, the spin pole trajectory is along a circular cone                circular orbits, can be written as (Ward, 1975a)
                      centered on the orbit pole. In that case, the spin pole main-
                      tains a constant obliquity as it precesses. If the orbit pole                           (v + (u – v)cos[ε])sin[ε] = sin(i – ε)(6)
                      is itself precessing, as is generally the case, the spin pole
                      trajectory can be quite complex. If the orbit pole is precess-             where i is the inclination of the orbit pole to the invariable
                      ing much faster than the spin pole can move, then the spin                 pole, and ε is the obliquity or separation of spin and orbit
                      pole essentially sees a spin-averaged orbit pole, and pre-                 poles. The parameters u and v are related to the moments
                      cesses at nearly constant inclination to the invariable pole,              of inertia of the body, and the relative rates of orbital mo-
                      which is the pole about which the orbit is precessing.                     tion and orbital precession.
               122        Europa
                   The first of these parameters has the form                       (1969), the usual numbering of these separate Cassini states
                                                                                                                               ˆ
                                                                                    {S , S , S , S } is that S  is sˆ near to k and on the same
                                                                                      1   2    3   4            1            ˆ
                                           u = U p                          (7)     side as nˆ; S  is somewhat farther from k, and on the opposite
                                                                                               2
                                                                                    side from nˆ; S  is retrograde, and thus nearly antiparallel
                                                                                                    3                     ˆ
               where the moment dependent factor is                                 to nˆ; and S  is on the same side of k as S , but farther from
                                                                                          ˆ    4                                1
                                                                                    nˆ and k. These spin states represent tangential intersections
                                  3 C – A         3 J  + 2C                         of a sphere (possible orientations of the spin pole) and a
                             U=                =      2      2,2            (8)     parabolic cylinder representing the Hamiltonian.
                                  2     C         2       c                            If the radius of curvature of the parabola is too large,
                                                                                    there are only two possible spin states, otherwise there are
               The relative rates of orbital motion and orbit plane preces-         four. At the transition point, states 1 and 4 coalesce and
               sion is                                                              vanish. In the axisymmetric case, for which v = 0, the tran-
                                                 n                                  sition occurs at (Henrard and Murigande, 1987; Ward and
                                         p = dΩ/dt                          (9)     Hamilton, 2004)
                                                                                                                 2/3         2/3 3/2
               where n is the mean motion, and Ω is the longitude of the                            u = –(sin[i]    + cos[i]   )               (16)
               ascending node of the orbit. For most bodies, the node re-
               gresses and this ratio is thus negative. The second param-           and
               eter has a similar factorization
                                                                                                                           1/3
                                                                                                          tan[ε] = –tan[i]                     (17)
                                           v = V p                         (10)
                                                                                    If the magnitude of the parameter u is larger than the value
               with                                                                 given by equation (16), then all four Cassini states exist.
                                                                                       All four of the Cassini states represent equilibrium con-
                                     3 B – A         3 C                            figurations. That is, if the spin pole sˆ is placed in such a
                                V =               =       2,2              (11)     state, it will precess in such a way as to maintain a fixed
                                     8     C         2    c                                                        ˆ
                                                                                    orientation relative to nˆ and k. The states S , S , and S  are
                                                                                                                                  1   2        3
                                                                                    stable, in the sense that small departures from equilibrium
                   When these substitutions are made, the constraint equa-          will lead to finite amplitude librations. Each of these states
               tion (6) can be written in either of the alternative forms           is the dynamical center of a domain of stable librations, and
                                                                                    these three domains cover the entire sphere. In contrast, S
                                                                                                                                                   4
                2c sin(i – ε) = 3p (C      + (J  + C   ) cos[ε]) sin[ε]    (12)     is unstable. On longer timescales, when tidal effects are
                                       2,2     2     2,2
                                                                                    included, only states S  and S  appear as secularly stable
                                                                                                             1       2
                                       8C sin(i – ε) =                     (13)     (Peale, 1974), and Gladman et al. (1996) have further ar-
                        3p (B – A + (4C – B – 3A) cos[ε]) sin[ε]                    gued that whenever S and S  both exist, S  will be favored.
                                                                                                           1      2              1
                                                                                       Returning briefly to consideration of the Moon, it is the
               These constraint equations are linear in polar moment, but           only body in the solar system known to occupy Cassini state
               nonlinear in obliquity. Thus, if both gravitational coeffi-          S . Ward (1975) has argued that the Moon initially occu-
                                                                                     2
               cients and the inclination and obliquity can be measured,            pied S , but during its orbit evolution outward to the present
                                                                                          1
               we could rather trivially solve for the polar moment as              distance from Earth, the states S  and S  merged and dis-
                                                                                                                        1       4
                                                                                    appeared, forcing the Moon to transition to state S .
                                                                                                                                            2
                              3p (C  + (J  + C ) cos[ε]) sin[ε]
                         c =         2,2    2     2,2                      (14)     2.3.  Application to Europa
                              2               sin[i – ε]
                                                                                       From the perspective of obliquity dynamics, there are
                              3p (B – A – (3A + B) cos[ε]) sin[ε]                   two important ways in which Europa differs from the Moon.
                         C = 2         4sin[i – ε] – 3p sin[2ε]            (15)     The orbit precession for Europa is not steady, because its
                                                                                    orbit is significantly perturbed by Io, Ganymede, and Cal-
                                                                                    listo (Lieske, 1998; Lainey et al., 2004a,b) and the presumed
                   If only one of J  and C     are known, the hydrostatic as-       presence of an icy shell decoupled from the underlying
                                   2        2,2
               sumption can be used (see section 2.1). When solving these           material implies that the moments of inertia of the shell
               constraint equations for obliquity, the situation is somewhat        itself need to be considered. The first effect, as discussed
               more subtle. In general, there are either two or four distinct       below, can be included by considering precession effects
               real solutions for obliquity, depending upon the values of           on a mode-by-mode basis. The latter effect is considered
               the input parameters. In all cases, the spin pole sˆ, orbit pole     in some detail in the following discussion on forced libra-
                                       ˆ
               nˆ, and invariable pole k are coplanar. It is also convenient to     tions (section 3).
               define a signed obliquity, with positive values correspond-             Obliquity variations for dissipative bodies in nonuni-
                                                          ˆ
               ing to sˆ and nˆ on opposite sides of k. Following Peale             formly precessing orbits can be easily accommodated via
The words contained in this file might help you see if this file matches what you are looking for:

...Bills et al rotational dynamics of europa bruce g nasa goddard space flight center and scripps institution oceanography francis nimmo university california santa cruz ozgur karatekin tim van hoolst nicolas rambaux royal observatory belgium benjamin levrard institut de mecanique celeste calcul des ephemerides ecole normale superieure lyon jacques laskar the state is only rather poorly constrained at present it known to rotate about an axis that nearly perpendicular orbit plane a rate constant approximates mean orbital small departures from rotation os cillations both lead stresses may influence location orienta tion surface tectonic features however geological evidence for either these processes disputed we describe variety issues future geodetic observations will likely resolve including variations in direction on wide range timescales since external perturbations causing changes are generally well amplitude phase responses provide important information internal structure focus three a...

no reviews yet
Please Login to review.